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1
INTRODUCTION

1.1 Background and aims of the monograph

Financial returns, albeit unpredictable according to the definition of Sims
(1984), display both temporal dependency in their second order moments and
heavy-peaked and tailed distributions. While such a phenomenon was known
at least since the pioneer work of Mandelbrot (1963) and Fama (1965), it was
only with the introduction of the autoregressive conditionally heteroscedastic
(ARCH) model of Engle (1982) and Bollerslev (1986) that econometric models
of changing volatility have been intensively fitted to data. ARCH models have
had a prominent role in the analysis of many aspects of financial econometrics,
such as the term structure of interest rates, the pricing of options, the presence
of time varying risk premia in the foreign exchange market: see Bollerslev et
al. (1992), Bera and Higgins (1993), Bollerslev et al. (1994) or Palm (1996) for
surveys. The quintessence of the ARCH model is to make volatility dependent
on the variability of past observations.-An alternative formulation initiated by
Taylor (1986) makes volatility be driven by unobserved components, and has
come to be known as the stochastic volatility (SV) model. As for the ARCH
models, SV models have also been intensively used in the last decade, especially
after the progress accomplished in the corresponding estimation techniques, as
illustrated in the excellent surveys of Ghysels et al. (1996) and Shephard (1996).
Early contributions that aimed at relating changes in volatility of asset returns
to economic intuition include Clark (1973) and Tauchen and Pitts (1983), who
assumed that a stochastic process of information arrival generates a random
number of intraday changes of the asset price.

Parallel to this strand of empirical research, option pricing theory has ex-
panded into generalizations of the celebrated Black and Scholes (1973) and
Merton (1973) evaluation formulae of European options. The Black-Scholes
model, for instance, assumes that the price of the asset underlying the option
contract follows a geometric Brownian motion, and one of the most successful
extensions has been the continuous time SV model originally introduced by
Hull and White (1987), Johnson and Shanno (1987), Scott (1987) and Wiggins
(1987) (more recent related work includes Amin and Ng (1993), Duan (1995),
Kallsen and Taqqu (1998) and Hobson and Rogers (1998)). In these models,
volatility is not a constant, as in the original Black-Scholes model; rather,
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it is another random process typically driven by a Brownian motion that is
imperfectly correlated with the Brownian motion driving the primitive asset
price dynamics. Similar extensions have been introduced in the term structure
literature.

In this monograph, we emphasize the use of ARCH models in formulating,
estimating and testing the continuous time stochastic volatility models favored
in the theoretical literature. The primary source of our research agenda came
from work that Daniel B. Nelson published during the first half of nineties, and
that is now collected in the second part of the book edited by Rossi (1996).
In the first of his celebrated papers, Nelson (1990) was able to show that al-
though ARCH processes are casted in terms of stochastic difference equations,
they can be thought as reasonable approximations to the solutions of stochas-
tic differential equations as the sampling frequency gets higher and higher.
In technical terms, the volatility process generated within ARCH-type models
converges in distribution towards a well defined solution of a stochastic dif-
ferential equation as the sampling frequency increases. Since SV models are
typically formulated in continuous time in the theoretical literature, Nelson’s
contribution appeared to many to be an important step towards ‘bridging the
gap’ between the discrete time perspective followed by the applied econome-
trician and the continuous time perspective idealized by the theorist.

Yet, perhaps due to the great progress accomplished in the domain of the esti-
mation of the parameters of stochastic differential equations through simulation-
based methods expanding the early work of McFadden (1989), Pakes and Pol-
lard (1989), Ingram and Lee (1991), Duffie and Singleton (1993), Smith (1990,
1993), Gouriéroux et al. (1993), Bansal et al. (1995) and Gallant and Tauchen
(1996), Nelson’s ideas were not pushed far enough in the subsequent empirical
and statistical literatures; see Gouriéroux and Monfort (1996) for a systematic
account of simulation-based econometric methods. One concomitant reason is
that the continuous record asymptotics developed for ARCH models do not
deliver a theory for the estimation of the relevant parameters; rather, such
methods typically take the parameters as given, and study the limiting behav-
ior of stochastic difference equations in correspondence of fixed, well-chosen
(perhaps too well-chosen) sequences of parameters.

The methodology introduced by Nelson, however, revealed useful to show
that appropriate sequences of ARCH models are able to estimate consistently
the volatility of a given continuous time stochastic process as the sample fre-
quency gets larger and larger, even in the presence of serious misspecifications:
see Nelson (1992) and Nelson and Foster (1994) for the univariate cases, and
Bollerslev and Rossi (1996) (p. xiii-xvii) for a very succinct primer on the fil-
tering performances of ARCH models as applied to continuous time stochastic
volatility models. As put by Bollerslev and Rossi (1996) (p. xiv),
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“one could regard the ARCH model as merely a device which can
be used to perform filtering or smoothing estimation of unobserved
volatilities”.

We believe that this represents one of the most important aspects of Nel-
son’s work. In addition to the point estimates of the parameters of stochastic
differential equations systems, indeed, an essential ingredient for the practical
implementation of any continuous time stochastic volatility model is obviously
the knowledge of the volatility at some dates of interest. If one wishes to make
use of an option pricing formula that takes stochastic volatility into account,
for instance, one has to know not only the price of the asset underlying the con-
tract, but also the instantaneous volatility of that price. However, volatility is
obviously not observable—as it can instead be the case of a share price—, and
obtaining estimates of it in continuous time is not an easy task; see, however,
the recent work of Gallant and Tauchen (1998) that is based on reprojection
techniques (previous work on the filtering techniques of stochastic volatility is
succinctly reminded in section 1.2.1).1

Figure 1.1, taken from Fornari and Mele (1999a), visualizes one simulated
path from which one can appreciate the ‘typical’ filtering of an ARCH model

as applied to a restricted version of a theoretical short-term interest rate model
presented in chapter 5:

dr(t) = (¢—0r(t))dt +r(t)}/2a(t)dWM(t) 11
do(t) = (@ - po(t))dt + Yo (t)dW(t) (1.1)

where W) i = 1,2, are standard Brownian motions, and ¢, 8,@, ¢ and % are
real parameters whose values have been fixed at the corresponding estimates
obtained with US data (see chapter 5 for some additional details, and Fornari
and Mele (1999a) for a more technical presentation). The single trajectory
reported in the figure represents a weekly sampled trajectory of o(t) obtained
by simulating (1.1); the dotted line represents instead the trajectory of the
(rescaled) volatility obtained when an ARCH model is fitted to the simulated
weekly sampled trajectory of r(t). The strength of such a visual, informal
evidence has been formally tested in the Monte Carlo experiment conducted in

1We are not considering here the possibility of using a theoretical model to extract
volatility and/or estimate parameters by means of cross sectional information (e.g.,
option and/or bond prices). If such a theoretical model had a closed-form solution,
this could be an interesting device. Since continuous time stochastic volatility models
typically have not closed form solutions, using cross sectional information for filter-
ing volatility and estimating all the model’s parameters is for the moment nearly
unfeaseable, requiring an extremely fine numerical integration of partial differential
equations in correspondence of each candidate of the parameter values. See, however,
Fornari and Mele (1999a and 1999b) for related work on both term-structure and
European option pricing issues. For cross sectional methods applied to option pricing
objectives similar to our 1999b paper, see Chernov and Ghysels (1999).




4 Stochastic volatility in financial markets

~— discretely sampled diffusion ----. (rescaled) ARCH filter
030 _

0.25
020 |
0.15 |
0.10

0.05

000 f ..
200 400 ' 600 800 1000 '

FIGURE 1.1. Typical filtering of the weekly sampled volatility diffusion o(t) in eqgs.
(1.1) by means of an ARCH model

Fornari and Mele (1999a), where a very low RMSE is shown to divide the two
trajectories in thousands of simulations; notice that previous related work on
Monte Carlo evidence concerning ARCH models as consistent volatility filters
was already conducted as early as Schwartz et al. (1993).

Such results should reinforce the researcher’s motivation on the use of ARCH
models as approximations of diffusion processes. Yet, relatively little empirical
work has been done in that direction. This point is also evidenced by Campbell
et al. (1997) (p. 381), who notice that:

“The empirical properties of [ARCH as approximators of continu-
ous time stochastic volatility processes] have yet to be explored but
will no doubt be the subject of future research.”

The research presented in this monograph tries indeed to accomplish this
task. We wish to outline two major steps in our research strategy. The first
one consists In constructing continuous time economies displaying equilibrium
dynamics to which ARCH models converge in distribution as the sample fre-
quency gets infinite. This allows us to obtain a microeconomic foundation of
the continuous time models that we take as the data generating mechanism.
The utility of such an approach lies in the possibility of determining explic-
itly, within standard preference restrictions (e.g., CRRA utility functions), the
risk-premia demanded by agents to be compensated for the fluctuations of the
stochastic factors. Our primary field of application will be the theory of the
term structure of interest rates with stochastic volatility, a field that is rela-
tively less developed than the corresponding European option pricing domain
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where, instead, we take a more data-oriented approach (see section 1.3 for
further introductory details).

Naturally, there are other continuous time candidates than the economies
that we consider here. As shown in chapters 4 and 5, however, only a minor
change in notation (and in the corresponding computer codes!) is required to
bring our models in touch with these alternatives. In our theoretical model of
the term structure of interest rates, indeed, stochastic volatility is generated
by the variability of the economic fundamentals and, as is well-known since the
seminal contribution of Harrison and Kreps (1979), any arbitrage-free specifi-
cation of asset prices can be sustained by a competitive equilibrium. In chapter
10 of the Duffie’s (1996) textbook, for instance, the reader can see such a phe-
nomenon at work within the standard univariate representation of the Cox et
al. (1985¢) model; as concerns stochastic volatility, we show in chapter 4 that
the choice of the primitive measure space and subsequent factor restrictions
crucially determine the final predictions of our equilibrium model of the term
structure. To resolve for such an indeterminacy, two natural alternatives are
possible. The first one consists in specifying the primitives so as to obtain a
computationally (or even analytically) tractable model, as in the case of the
original single factor Cox et al. (19852) model. Such an idea is fully exploited
by Duffie and Kan (1996), who construct a class of ‘exponential-affine’ models
“specifying simple relationships among yields” (p. 380); see also Brown and
Schaefer (1995) for an earlier treatment of related issues. Another possibility
fully exploits the idea that, given the imperfections of any model, it is an em-
pirical issue as to which primitives will serve best at generating a model of the
term structure of interest rates. In this case, one can look for economies that
support dynamics that are more or less consistent with past data analysis or
even with informal observation. Qur reverse strategy is thus justified by this
second possibility.

The second step of our research program is devoted to a more concrete
econometric analysis of continuous time stochastic volatility models. Precisely,
the concern lies in the estimation of the parameters of the stochastic differential
equations characterizing our equilibrium economies. In the estimation strategy
that we suggest, one first uses the moment conditions under which ARCH
models converge in distribution towards the theoretical models, obtaining a
direct, preliminary estimate of the model’s parameters. Since such estimates
are obtained by means of discrete time models that are typically not closed
under temporal aggregation (Drost and Werker (1996)), one then tests and
corrects possible disaggregation biases by using, this time, ARCH models as
auziliary devices in simulation-based schemes. Fornari and Mele (1999a, 1999b)
have already applied such a strategy to option prices and US interest rate data,
finding strong evidence that the correction made by indirect inference is not
significant. In addition to being an appropriate tool to filter out stochastic
volatility, such results also make a strong case for the use of ARCH models
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as approximating devices of the parameters of certain stochastic differential
equations.

A related topic lies between the two above mentioned steps of our work:
it consists of a better understanding of the functioning of ARCH models by
resorting to the more easily tractable continuous time approach. This objec-
tive arises quite naturally, since ARCH models are intensively used (not only
in mathematical finance as in this monograph), which would require a clear
understanding of their theoretical characteristics. In this respect, too, the con-
tinuous time approach of Nelson (1990) offers an appropriate tool of analysis.
Indeed, ARCH models are non linear stochastic difference equations, and some
of their properties are quite cumbersome to establish. The task is easier when
one examines their behavior as the sampling frequency tends to infinity. In this
case, ARCH models are ‘approximated’ by stochastic differential equations, a
relatively easier to study object: in other terms, one would use diffusions as
ARCH approzimations to get insights into the functioning of ARCH mod-
els. As an example, in his first contribution, Nelson (1990) showed that the
GARCH(1,1) model of Bollerslev (1986) (see eq. (1.4) below) converges in dis-
tribution towards the following stochastic differential equation:

do(t)? = (@ — o (t)2)dt + Po(t)2dW? (2), (1.2)

where W is a standard scalar Brownian motion, and @, ¢, and % are real
valued, non stochastic parameters. Now such a result implies that in continu-
ous time, (1) o2 follows a stationary distribution that is an inverted Gamma;
and (2) the error process from a given observation model is (approximately)
unconditionally Student’s ¢ distributed, even if it is conditionally normal. Such
results would not be obtained in a discrete time setting.

Our own contribution in this field consisted in deepening some of the previous
findings. Precisely, we showed (Fornari and Mele (1997a)) that the limiting
results obtained for the GARCH(1,1) hold as well for a fairly general model
previously introduced by Ding et al. (1993) (see eq. (1.6) below), and for the

model of Fornari and Mele (1997b). The first scheme admits a ‘diffusion limit’
that has the following form:

do(t)? = (@ — pa(t)®)dt + po(t)’dW(t), 6 € Rys (1.3)

and generalizes both the volatility equation in (1.1) and eq. (1.2). In addition
to provide a flexible specification that can be useful in applied work related to
mathematical finance—notably via the introduction of a sort of ‘volatility con-
cept’ 0%—, eq. (1.3) enabled us to carry out a detailed analysis concerning the
distribution of errors terms from the corresponding (discrete time) observation
model: see section 1.2.4 for more details. On the other hand, the derivation of
a diffusion limit in correspondence of our 1997b model was instructive to us,
since despite the nonlinearities that it was designed to capture (see section 1.2.3
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below for details), the kind of conditions required to obtain the convergence
result were of the same essence as those of Nelson.

The remainder of this chapter has been designed to be a more systematic
introduction to all these research themes to which we gave a contribution.

Next section provides a very selective overview of ARCH models. Given the
many existing surveys on ARCH models, we only constrain ourselves to present
those aspects of ARCH models that are connected with our own contribution:
in section 1.2.1, we present the very basic ARCH models as well as their (dis-
crete time) SV competitors; in section 1.2.2, we present the extensions of these
models that are designed to capture some observed non linear dynamics of
volatility, notably the fact that volatility tends to react asymmetrically to past
shocks of different sign; in section 1.2.3 we deepen the previous issue, by argu-
ing that volatility asymmetries are subject to reversals, i.e. positive shocks may
sometimes induce more volatility than negative shocks; section 1.2.4 provides
some details and motivation concerning our contribution to the approxima-
tion results for ARCH models. Section 1.3 covers some of the most important
economic implications of continuous time stochastic volatility: section 1.3.1
presents the central issue of the problem in the option pricing domain, and
insists on market incompleteness, the related impossibility to implement pure
hedging strategies, and the existence of partial hedging strategies that could
be optimal according to certain criteria; section 1.3.2 describes some of the ex-
isting models of the term structure of interest rates with stochastic volatility.
Section 1.4 is an introduction to the statistical methodology that we use to
conduct inference in our continuous time models. Finally, section 1.5 provides
information about the plan of the remainder of the monograph.

1.2 Empirical models in discrete time

1.2.1 THE BASIC MODELS

The original ARCH model posits the existence of a relation between past
squared innovations of an observation assets returns changes model and their
current conditional variances. Let {£,}$2, be the error process of some observa-
tion model; then, the GARCH(1,1) model assumes that {€;}2, is conditionally
normal with variance changing through time in a fashion which resembles a
restricted ARMA process, i.e.:

€[ Liy ~ N(Oiatz)

0} =w+ae?_ | +pPol (1.4)

where w > 0, a, 8 > 0 are real, non-stochastic parameters and I is the infor-
mation set dated ¢. In the original ARCH(p) model of Engle (1982), 8 was zero,
| and the volatility o2 was driven by a linear combination of p lagged squared
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error terms: 07 = w + Y r_, aye?_;, a; > 0. The model can be estimated by
standard maximum likelihood (ML) techniques. Very succinct presentations of
the properties of such estimators are in the surveys cited at the beginning of
the introductory section of this chapter.

A natural alternative to model (1.4) is given by the SV model, in which
log-volatility typically follows an AR process. In the very first contributions,
the corresponding estimation techniques relied typically on a simple method of
moments (e.g., Scott (1987) and Wiggins (1987)) and the generalized method
of moments of Hansen (1982) (e.g., Chesney and Scott (1989) and Melino and
Turnbull (1990)). An alternative estimation technique is based on the Kalman
filter (see Scott (1987) and Nelson (1988) for an early treatment of such issues):
let r; denote an asset return as of time ¢, and rewrite the observation equation

‘Tt=Ut‘ut,‘uzzN(0,1)

logr? =logo? + &, & = logu?.

By postulating that the volatility propagation mechanism is
logo? =a+b-logo? |, +¢, ¢ =~ N(O,ag),

one sees that logr? is written in a state space form; hence, the model can be
estimated with the usual Kalman filtering techniques (see Harvey (1989) for a
textbook on such techniques applied to economics). Due to non-normality of
€, however, the likelihood function that results by the prediction error decom-
position of the Kalman filter is not the exact one, but one can invoke the usual
quasi-likelihood methods, as in Harvey et al. (1994). Jacquier et al. (1994) de-
rive the exact filter, and extensions can be found in Jacquier et al. (1999). A
comprehensive survey on related techniques can be found in Shephard (1996);
notice that an important aspect of these methods consists in extracting volatil-
ity estimates, which is not the case for the method of moments. Furthermore,
many of the preceding techniques were designed to estimate models that usually
are naive discretization of the corresponding continuous time models favored
in the theoretical literature; hence, they are likely to induce a discretization
bias; see, for instance, Melino (1994) for one of the earliest discussion of this
problem.

An alternative method to estimate a discrete time SV model can be based
on the indirect inference methods that are succinctly described in section 1.4.

1.2.2 EXTENSIONS

A shortcoming of the GARCH model is that the sign of the forecast errors
does nc?t influence the conditional variance, which may contradict the observed
‘dynamlcs of assets returns. Black (1976), for example, noted that volatility
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tends to grow in reaction to bad news (excess returns lower than expected),
and to fall in response to good news (excess returns higher than expected). The
economic explanation given by Black is that negative (positive) excess returns
make the equity value decrease and the leverage ratio (defined as debt/equity)
of a given firm increase (fall), thus raising (lowering) its riskiness and the future
volatility of its assets. This phenomenon has consequently come to be referred
to as leverage effect (Pagan and Schwert (1990), Nelson (1991), Campbell and
Hentschel (1992)). It has to be said, however, that the negative correlation
between asset returns and volatility seems to be too strong to be explained on
the basis of the leverage effect only; see Christie (1982) and Schwert (1989a).

The basic attempts to include such features into a convenient econometric
framework are the Exponential GARCH (EGARCH) model of Nelson (1991),
the Glosten et al. (1993) (GJR) model, the asymmetric power ARCH model of
Ding et al. (1993), the threshold ARCH model of Rabemananjara and Zakoian
(1993) and Zakoian (1994), the Quadratic ARCH of Sentana (1991), or the SV
model of Harvey and Shephard (1993a, 1993b) and Harvey et al. (1994). All
such models include the sign of past forecast errors as conditioning information
for the current values of the conditional variance.

In the EGARCH(1,1), for instance, the following equation generates o;:

log a? = w + Yout—1 + Y1 (|te—1| — E fue-1]) + 51080’?-1,

where u; = (£); and the asymmetric behavior of the log-variance with respect
to changes in past errors is captured by the terms multiplying 70,7:. Notice
further that such a formulation also allows one to relax positivity constraints
on the other parameters w, 8. :

In the GJR model, to cite another example, the following is the volatility
generating process:

0 =w+ ael_) +Pol_; +s-160, (1.5)

with w > 0, a,8 > 0, and s; is a dummy variable which equals one when ¢
is negative and is nil elsewhere. Here the asymmetry is captured by the term
multiplying v. When v is negative, negative shocks (¢ < 0) introduce more
volatility than positive shocks of the same size in the subsequent period.

A fairly general model has been proposed by Ding et al. (1993). In this paper
(see, also, Granger and Ding (1993, 1994)), the authors study US stock daily
returns and show that the autocorrelation function (a.c.f.) of absolute returns
raised to a positive power, say 6, is significantly different from zero and, fur-
ther, is not the strongest one for § = 2 over a considerably wide range of lags.?
Specifically, there are values of 8 close to one which make such an a.cf. the

2Granger and Ding (1993) attempted to link these findings to previous theoretical
results of Luce (1980). Let z. denote the series of returns on some speculative assets;
let A be a positive number. Then, Luce’s results imply that the measure of risk per-
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largest one for all the considered lags. Based on Monte Carlo evidence, Ding
et al. (1993) also report that both the GARCH(1,1) of Bollerslev (1986) and
the Taylor (1986) and Schwert’s (1989b) model (TS henceforth) are able to
reproduce the property that the a.c.f. of |:c¢|9 reaches its maximum in corre-
spondence of # ~ 1 for quite a high number of lags, despite the fact that the
GARCH(1,1) makes the conditional variance a linear function of past squared
,innovations, and the TS model sets the conditional variance equal to the square
of a linear function of past absolute innovations (see the third line in table 1).

' This motivated Ding et al. (1993) to propose the so-called Asymmetric Power
JARCH (A-PARCH) model:

‘ Uf =w+ a(let—ll - 7Et—1)6 + 50'?-17 Y€ (_11 1)1 (wl a’ﬁ) 6) € Ri (16)

''The main difference between (1.6) and standard ARCH equations is the power
8 to which o and (Je| — v¢) are raised. In standard applications, 6 is 2 or 1,
|while the A-PARCH imposes 6§ as a Box-Cox power transform on ¢, which has
to be estimated. Ding et al. (1993) show that model (1.6) encompasses at least
seven classes of ARCH models already proposed; see table 1.1 for some of these
| models. Naturally, the leverage effect is also captured within this model (hence
its definition as ‘asymmetric’), notably throughout the term multiplying v.

_ TABLE 1.1
GARCH(1,1) eq. (1.4)
GJR eq. (1.5)

Taylor-Schwert Oy =w+alg1| + Bory
Nonlinear ARCH 0¢¢ =w +« Iet_llts + Bot_,

One disadvantage of all the previous formulations is that volatility asymme-
tries are nested into the ARCH scheme in an abrupt manner. In the GJR model
(1.5), for instance, asymmetries in volatility are introduced by adding a term
to the standard GARCH(1,1) that is the product of the squared residual times
a step function of the residual: denote such a step function as g(e;) = v - s..
The dotted line in figure 1.2 represents @ when v < 0. In a private conver-
sation held with Timo Terasvirta in January 1995, we suggested a natural

| generalization that replaces v - s; with a function that changes smoothly in the
domain of definition of €. The straight line in figure 1.2 depicts one possible
o generally, a creative use of standard techniques from the smooth transition

ceived by agents can be proportional to Ey |z:4:|* where E, denotes the expectation
operator conditional on the information set as of time ¢. Under market consensus on
A, and under the assumptions that (1) z. distributes normally with zero mean and
variance o7 and (2) E.0J,, is the appropriate measure of volatility, then, standard
volatility measures may fail to capture an adequate dynamic characterization of risk,
since A is not necessarily 2; rather, it can take any positive value.
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FIGURE 1.2. Smoothing volatility asymmetries (y < 0)

modeling literature (see, e.g., Granger and Terasvirta (1993)) can be employed
to select an appropriate function g. To the best of our knowledge, Hagerud
(1997) and Gonzalez-Rivera (1998) were the first papers that exploited such
ideas by opening the route to the so-called ‘smooth-transition’ ARCH models.

1.2.3 VOLATILITY ASYMMETRIES: RAMIFICATIONS

According to empirical evidence originally reported in Rabemananjara and
Zakoian (1993), even the preceding asymmetric-type models might be unsuc-
cessful in taking into account some nonlinearities of the volatility dynamics. In
a study concerning disaggregated French returns, Rabemananjara and Zakoian
find that ‘high’ negative shocks increase future volatility more than high pos-
itive ones while at the same time ‘small’ positive shocks too often produce
a stronger impact on future volatility than negative shocks of the same size.
Thus, following the occurrence of a shock of a certain size, the asymmetric
behavior of the volatility might become reversed; the modeling of such feature
has also been the focus of two papers of ours (Fornari and Mele (1996, 1997b)).
Our first concern in Fornari and Mele (1997b) was to define the ‘size’ of the
shock at which a volatility reversal may occur. The definition we adopted was
based on the level of unexpected volatility generated by a shock at time ¢t — 1
(€¢~1). Consider the information set dated t — 2. The expected value of e?_l is
obviously 02_,; if, however, €2 | > 02_, (< 0%_,), we said that £;_; generates
(at time t — 1) a level of volatility higher (lower) than expected (at time t — 2).
Consider now a very small negative shock at time t — 1; if it produces a level
of volatility at time ¢ — 1 lower than expected at time ¢ — 2, there should be
| no reason to believe that volatility at time t will increase as a consequence of
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the leverage effect. Roughly speaking, a small negative shock which generates
lower volatility than expected may be regarded as good news; at the same
time, positive shocks which generate lower volatility than expected may be
regarded as relatively bad news. This might be a possible explanation of the
mechanism according to which a reversal originates. Furthermore, it gives a
natural explanation for what has to be regarded as a ‘high’ or a ‘small’ shock:
a high shock ¢ is the one for which €2 > 02 and viceversa.

In Fornari and Mele (1997b), we also presented an informal economic argu-
ment justifying the occurrence of volatility reversals. In particular, we noticed
that the Black’s (1976) arguments based on changes in the leverage ratio could
be deepened. The observation was that a change in the leverage ratio is likely
to be followed by a change in the expected performance of the firm, the latter
being a function of the differential between the expected average performance
of the sector in which the firm operates and the overall cost of debt. Suppose

that the economy has K productive sectors; one has that in the kth sector,
k=1,.. K,

g =P'¢+(Pk“")§a (1.7)
E

where i; and S; are the expected profitability and the price of the stock, r
the interest paid on debt, pi the average performance of the kth sector, D
the amount of debt, and 52, represents the leverage ratio of the jth firm in
the kth sector. Such a relation can be found in Modigliani and Miller (1958)
(proposition 1I, p. 271). Consider now the case that (px — r) is positive in
eq. (1.7). Then, a negative shock on S; may be regarded as more favorable
than a positive shock; in fact it increases :% and the expected profitability
of the firm: contrary to the celebrated Black’s explanation, a positive shock
may have a stronger impact on future volatility than a negative one of the
same size. The Black’s explanation, however, should be expected to be at work
when the negative shock is very large. In this case, indeed, two things may be
hypothesized to happen: first, economic agents may discount a recession of the
kth sector, i.e. a fall of p; second, the cost of the debt might be thought to
start rising sharply for the jth firm, which happens when r is positively related
to 32, (hence inversely related to S;). Both events are likely to change the sign
of (px — r), hence causing volatility reversals.

Past empirical research had generally overlooked the impact of previous (un-
expected or expected) volatility on its current expected level. Engle and Ng
(1993), for example, propose to analyze the impact of news on the current
conditional variance (i.e. on o2), keeping constant the information dated ¢t — 2
and earlier, with all the lagged conditional variances evaluated at their uncon-
ditional value. An important point in our paper was to define a sort of response
function of the future expected volatility to past unezpected volatility. Let, for
example, v = §o(e? — 02), where § is a real constant. A simple model that
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‘takes into account the preceding remarks is:

02 =w+ Bod_; + ol | + 81V “(1.8)

Let us suppose indeed that 6o < 0. If v,—; < 0 (i.e., ‘high’ shocks have occur.rgd)
then, ceeteris paribus, negative shocks generate more volatility than positive
ones. However, if v;_; > 0 (i.e., ‘small’ shocks have occurred) positive shocks
increase volatility more than negative ones. Thus, model (1.8) can take into
account situations where the asymmetric behavior of the volatility is reversed.

Unfortunately, model (1.8) is too simple. Furthermore, it imposes a ﬁx.ed
probability of occurrence of reversals that is approximately O.§8. To clarify
this point, let x? denote a chi-squared random variable, and notice that when
6o <0,

Pr (reversal at t) = Pr(e?_, < o2 ) =Pr(x} < 1) ~0.68,

whereas we would like to be endowed with a more flexible specification. Fornari
and Mele (1997b) took

02 =w+ fol_, +ae? | +8e1v, (1.9)

where now
— 2
m = 505? - 510: - 52,

so that v, is a constant plus a linear combination of the ‘observed volatility’
(¢2) and its lagged expectation (¢?), thus playing a role similar to that of an
error correcting variable. Fornari and Mele (1997b) refer to model (1.9) as the
Volatility-Switching (VS-) ARCH model.

Model (1.9) does not impose any a priori probability to the occurrence of
reversals. Proceeding indeed with the same algebra as before, and assuming
that 8o < 0 (which was the case of our estimates),

Pr(reversal at t) = Pr(e?_, < k102, + k) = Pr(x@ < k1 + koo ?)

where k; = %‘- and k; = %f,‘- When 8; < 0, the probability of reversals is
an increasing %unction of the conditional precision process. This is in accor-
dance with the explanation given above on the basis of relation (1.7): volatility
reversals can occur when volatility is low. If, on the contrary, the estimates
of (61,62) are such that (—kj,—kz) € IR?,,, the probability of reversal is nil;
such a situation arises, for instance, once that §; = 63 = 0, which is the re-
striction under which the VS-ARCH reduces to the GJR scheme. Thus, the
VS-ARCH model allows a more detailed analysis of the asymmetric behavior
of the volatility than the GJR model, enabling shifts in its direction, accord-
ing to the size of past shocks. Furthermore, the existence of reversals can be
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partly tested by ascertaining whether the VS-ARCH improves upon GJR.3
Fornari and Mele (1997b) were looking for international evidence by fitting the
VS-ARCH model to returns from seven stock exchanges. They found that on
average the VS-ARCH model outperformed the GJR, and provided evidence
of volatility reversals in almost all of the analyzed countries.

Finally, it is worth noticing that a variant of VS-ARCH model has also been
estimated in Fornari and Mele (1996); it takes the following form:

)

- A 1

—— — k)¢ (1.10)
Tt—1

The first three terms on the RHS are a standard GARCH(1,1) model. These,
together with the fourth term, define a GJR(1,1) model. The last term is
designed to capture the reversal of asymmetry that can be observed when
(£)? reaches k, the threshold value. Estimation results from this model were

perfectly in line with those subsequently published in Fornari and Mele (1997b).

2 9 2 2 .
oy =w+ae;_ + Boy_; + yst—16¢_1 + 8(

1.2.4 DIFFUSIONS AS ARCH APPROXIMATIONS

In addition to be useful devices in uncovering the filtering performances of
ARCH and, as it will be described in section 1.4, in enriching the estimation
techniques of continuous time stochastic volatility models, continuous time
methods can also be understood as a guidance to get interesting insights into
some properties of ARCH models in discrete time. In the introductory section
of this chapter, we mentioned that in his seminal paper Nelson (1990) showed
that the GARCH(1,1) error process follows (approximately) a Student’s ¢, un-
conditionally. One of the tasks that we gave ourselves in our 1997a paper was
to obtain results in correspondence of the GARCH(1,1) error process when
the error process is not conditionally normal; also, we investigated what is the
form of such a distribution when innovations are conditionally normal and the
volatility propagation mechanism is eq. (1.6). More generally, we were looking
for the stationary distribution of the error process when the error process is
not conditionally normal and the volatility propagation process is eq. (1.6).
Similar issues were dealt with in our 1997b paper.

In chapter 2 we attempt to present a scheme that explores these issues;
we will draw heavily on the theoretical sections of our corresponding 1997
papers. In our scheme, the error process is taken to be conditionally general
error distributed (g.e.d.). Such a choice is useful on an analytical standpoint,

31t is worth signalling that Engle and Ng (1993) fitted different asymmetric models
(not the VS-ARCH) to stock returns from Japan and found the GJR to be the best
parametric scheme to model asymmetries.

“In our original paper, the models were estimated via a normal likelihood pro-

file. It is possible to show that our results are robust to a generalization of such a
distributional assumption.
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while allowing at the same time for a fairly instructive first approximation
treatment of non-normality issues. One reason to deal with non-normal errors
came from well-known empirical findings of the mid eighties: the standardized
residuals obtained by using the conditional standard deviation of an ARCH-
type model is typically not normal, despite the use of conditionally normal
likelihood profiles.?

Nelson (1991) was the first author to make use of the g.e.d. in the attempt
to fit stock returns; as is well-known, the g.e.d. is characterized by a ‘tail-
thickness’ parameter, denoted hereafter as v, that tunes the height of the tails;
throughout this monograph, we will use the notation g.e.d.(,) to highlight the
presence of such a parameter: see egs. (2.1) for the corresponding analytical
details. The g.e.d. encompasses a number of distributions such as the normal
distribution or the Laplace distribution of the first kind; the Laplace distri-
bution of the first kind was used by Granger and Ding (1993) to fit different
ARCH models to stock returns data. It should be acknowledged, however, that
Nelson (1991) reported that the g.e.d. did not fully account for all of the out-
liers using an EGARCH scheme for US stock market data. Alternatives to the
g.e.d. are the Student’s t used, for instance, in Engle and Bollerslev (1986),
Bollerslev (1987), or Hsieh (1988) to model foreign exchange rates, or the gen-
eralized Student’s ¢, used in Bollerslev et al. (1994) to model stock returns.
The generalized Student’s ¢ distribution nests both the Student’s ¢ and the
g.e.d., and is attractive since it has two shape parameters that take account of
both the tails and the central part of the conditional distribution of the error
process. Yet, Bollerslev et al. (1994) showed that even the likelihood function
based on the generalized Student’s t does not allow for a fully satisfactory
treatment of tail events in US stock returns.

Our theoretical results can be summarized as follows. Under an appropriate
discretization scheme, we first show that the solution of model (1.6) converges
in distribution towards the solution of eq. (1.3). In a second step, we show that
when the sampling frequency gets infinite, a conditionally g.e.d.(,y A-PARCH
error process follows a stationary distribution that is a generalized Student’s
t distribution when § = v; the restriction § = v was made for analytical
convenience only, but the empirical section of Fornari and Mele (1997a) and
Mele (1998) reported that it can hardly be rejected empirically. Obviously,
the most interesting theoretical case is the general one in which § # v: while
we do not have closed-form solutions in this case, numerical results suggest
that ceeteris paribus, low values of § tend to: (1) raise the central part, and (2)
increase the tails of the stationary distribution of the error process. Insofar as v
is considered, we find that it shapes such a stationary distribution in the same

5The failure of conditional normality was documented by Bollerslev (1987) or
Hsieh (1988) in exchange rate studies, and by Bollerslev et al. (1994) in stock returns
enquiries.
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manner as it does with the conditional one. Furthermore, chapter 2 also derives
a closed-form solution for the instantaneous correlation between a continuous
time asset price process and its instantaneous volatility, as approximated by
the A-PARCH.5 We find that the correlation is constant, and that its modulus
never reaches unity for a reasonably wide set of parameters’ values.” Finally,
chapter 2 present analogous results for the VS-ARCH eq. (1.9), although we do
not deal there with correlation issues, and we confine ourselves to the simplest
‘ situation where the error process is conditionally normally distributed.

1.3 Theoretical issues

1.3.1 EUROPEAN OPTION PRICING

Among the standard absence-of-frictions hypotheses underlying the celebrated
Black and Scholes (1973) formula® for the price of European-type option con-
tracts, an important assumption was the complete market structure that can
be generated by assuming that the price of the asset underlying the option
contract is a geometric Brownian motion:

dS(t) = pS(t)dt + oSE)dW (2), (1.11)

where p and o are two constants. Due to what Heston (1993a) (p. 933) fig-
uratively terms “a surprising cancellation”, the constant u vanishes out from
the final formula,® which is obviously not the case for the constant o.

In addition to be inconsistent with time-series evidence, the constancy of o
also gives rises to empirical cross-sectional inconsistencies: when one compares
the Black-Scholes formula with observed option prices and then inverts the
formula to recover the ¢ in (1.11), one obtains that the resulting ¢ is in fact
a U-shaped function of the strike of the option. Such a phenomenon has come
to be known as the ‘smile effect’.

To the best of our knowledge, Ball and Roma (1994) (p. 602) (see, also,
Renault and Touzi (1996) for related work) were the first to point out that
the smile effect emerges in a rather natural fashion when the data generating

:Such a result did not appear in the original 1997a paper, but in the 1999a one.
In an mdepenfient work, Duan (1997) elegantly accomplishes similar tasks for
models encompassing subclasses of the A-PARCH, but here we account for all the

encompassed models, as well as more general distributional assumptions of the dis-
crete model.

§See formula (3.16) in chapter 3.
Heston (1993a) shows that the independence of the option pricing formula on

.the average appreciation rate of the underlying asset price is not a general property
in correspondence of alternative asset price processes.
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mechanism is a stochastic volatility one,

dS(t) = |pdt +cr(t_)_S(t)dW(l)(t) (1.12)
du(t) = |B(t)dt + P(t)dWe(¢) )
and yet one insists on inverting the Black-Scholes formula to recover a constant
volatility. In system (1.12), v is a monotone function of o; the functiéns B,y
are taken to be measurable with respect to the information set generated by
the Brownian motions W1, W, and guarantee the existence of a solution to
(1.12) (see chapter 3 for a more technical presentation on existence issues).
The assumptions of the authors were essentially the ones underlying the Hull
and White (1987) model; Renault (1997) presents a survey on the state-of-
the-art on this issue, and Das and Sundaran (1999) develop further analytical
results concerning the case in which W? can be written as W7 = pW ) 4 (1
p?)/2W® | where p is a constant in (~1,1), and W? is another Brownian
motion, finding however that standard SV models are not entirely satisfactory.

The Black-Scholes setting was of course modified to take account of stochas-
tic volatility, as in (1.12); Hull and White (1987), Scott (1987), or Wiggins
(1987) were early attempts in that direction. Explicit solutions have proved
hard to derive: if one excludes the approximate solution provided by Hull and
White (1987) or the analytical solution provided by Heston (1993b),'° one typi-
cally needs to derive the price of the call by implementing Monte Carlo methods
(e.g., Johnson and Shanno (1987), Engle and Mustafa (1992) or Lamoureux
and Lastrapes (1993)), or by numerically solving a certain partial differen-
tial equation, as in the seminal papers of Wiggins (1987):!! see the following
chapters.

It became rapidly clear, however, that the very problem associated with
stochastic volatility was not the mere computational effort needed to gener-
alize the Black-Scholes option pricing formula. Rather, a conceptual problem

19Guch a solution was provided on the assumption that stochastic volatility was the
solution of a linear mean-reverting “square-root” process; in a square root process,
the instantaneous variance of the process is proportional to the level reached by that
process: in model (1.12), for instance, %(t) = ¥u(t)'/?, where ¢ is a constant. In
fact, by delving into the computation details of Heston (1993b), one realizes that
the role played by the “square-root hypothesis” in obtaining a closed-form solution
resembles very much the role played by “variance-affinity” in the affine term-structure
literature (see chapter 4 for details concerning the term structure of interest rates
with stochastic volatility).

11iven the increase in the computational speed of modern computers, the numer-
ical integration of a partial differential equation is not a real limitation; rather, it
would suffice to slightly change a computer code to compare rather different stochas-
tic volatility models: see chapter 5 for an illustration of this fact to our class of
term-structure model with stochastic volatility that is developed in chapter 4. By
contrast, the “human” computational time needed to find closed-form solutions in
correspondence of realistic models can sometimes increase in an unreasonable way!
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emerged, which is the fact that the presence of stochastic volatility generates
market incompleteness. Heuristically, market incompleteness means that agents
cannot hedge against future contingencies; one of the formal reasons here is
that the number of assets is too low to span the entire space of contingen-
cies. In an economy with diffusion state variables, for instance, incompleteness
arises when the number of assets is less than the dimension of the Brownian
motion driving the state variables: this is exactly the case of model (1.12),
where trading strategies involving only one asset are not sufficient to duplicate
the value of the option. In other terms, when the option price H is rationally
formed at time ¢, it will be of the form H(t) = H(t, S(t),v(t)), where v(t) is
not adapted to the filtration generated by W{1)(t): therefore, trading with only
the primitive asset does not allow for a perfect replication of H, which is the
argument required to obtain one, and only one, arbitrage-free option price: see
chapter 3 for a technical presentation.

To summarize, the presence of stochastic volatility introduces two inextri-
cable consequences: (1) perfect hedging strategies are impossible; (2) there is
an infinity of option prices that are admissible with the absence of arbitrage
opportunities.

One way to treat the second issue would consist in making a representative
agent ‘select’ the appropriate pricing function. This was the case of the Wiggins
(1987) and Heston (1993b) models, for instance, who use the representative
agent framework of Cox et al. (1985b). Furthermore, the use of a representative
agent is justified on a solid microeconomic basis, since in these models the
representative agent typically can trade with two assets (the primitive asset
and the option contract), thus having access to a complete market structure.!2
The price to be paid to select a pricing function via preference restrictions
of a representative agent, however, is that the resulting price is obviously not
preference-free. In a sense, Hull and White (1987) also followed such a selection-
by-preferences-restrictions strategy: in their framework, indeed, the authors
supposed that agents are not compensated for the fluctuations of stochastic
volatility i.e, the volatility risk premium is nil:!* such an assumption is not
confirmed empirically (see, e.g., Lamoureux and Lastrapes (1993)), and has
been formally shown to be equivalent to an economy with a representative
agent with logarithmic-type utility function (Pham and Touzi (1996)), a fact
that was roughly known since Wiggins (1987). In Fornari and Mele (19990b),
we take a data-oriented approach, by estimating what we termed a volatility
risk-premium surface; see the end of section 1.3.2 for further introductory

2Bajeux and Rochet (1996) derived the conditions under which market complete-
ness is ensured in a stochastic volatility framework. Romano and Touzi (1998) ex-
tended that framework by allowing, inter alia, for the existence of a correlation process
between the primitive asset price and its instantaneous volatility.

'?As a Hull and White pointed out (p. 283, footnote 1), a change in notation is
sufficient to switch their model to a model with a constant volatility risk premium.
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discussion, and chapter 3 for technical details.

A related utility-based approach has been developed by Davis (1997);!4
Davis’ results were not designed directly for the stochastic volatility framework.
Davis proposed to select a pricing function by a marginal rate of substitution
argument: an agent has initial wealth equal to z, from which she generates final
wealth equal to V*™(T) by means of some portfolio process m; her problem
is max, E(u(V*"(T))). Now suppose that our agent diverts a small amount
of her initial wealth x to buy an unhedgeable claim X that costs p; define
Q(d,p,z) = sup, E(uw(V="4"(T) + %X)). Davis defines a ‘fair’ price as the
solution p(z) of the following first order condition: B%Q(d, P, :c)| gm0 =0

An useful complement to utility-based approaches can be made by concen-
trating on hedging strategies: indeed, despite the fact that there are no perfect
hedging strategies in incomplete markets, one can always look for some sort of
‘imperfect’, but optimal strategies. The notion of optimality is then geue.x:ated
by some loss function. As an example, if one considers strategies that, mep.ly
make the volatility of the resulting strategy value the best approximation (in
projection terms) of the volatility of an unhedgeable claim value, one gets that
the following imperfect, pure hedging strategy:

- oH 0H - -1

7(t) = (555 + 5 B 0B (113)

has the property in question within model (1.12); such a result generalizes

a previous one obtained by Hofmann et al: (1992) to the case of a non-zero

correlation. If one takes model (1.3} as the volatility generating mechanism,

with W9 = pW () 4 (1-p?)Y/2W 2 for instance, relation (1.13) then becomes:

~ 0H 0H 5=

7(t) = (5590 + o (550 o0,

and can be numerically evaluated by usual methods, such as those exploited in

the last section of Hofmann et al. (1992). In an empirical study, Chernov and

Ghysels (1999) have already made use of formula (1.13) within the Heston’s

framework. In addition to derive such a formula in a general diffusion context,

chapter 3 also adds a few results connecting strategies like (1.13) to the Hull
and White hypothesis that the volatility risk premium is nil.

Naturally, one may wish to consider criteria that are more general than
the preceding one, but the price to be paid is a more complex analysis that
has recently received a somewhat detailed treatment in mathematical finance:
portfolio selection strategies belong to a very old research activity, but tech-
niques in continuous time economies with incomplete markets have been in-
troduced relatively recently; see the introduction to chapter 3 for a list of

143uch an approach is very close to that developed by Mankiw (1986) in a different
. context.



20 \Stocbastic volatility in financial markets

some of the most important initial contributions and surveys papers in this
domain. Fundamentally, two approaches have been formulated. In the first
one, one searches over strategies that minimize a loss function, and a more
general formulation than the one considered above is, for instance, the con-
tinuous time incomplete market problem considered by Duffie and Richardson
(1991): 7(p) = argmin, E(VP™(T) — X)2. In a series of papers that are cited
in the introduction of chapter 3, Schweizer subsequently defines an approzi-
mation price, equal to p = argmin, E(VP=@)(T) - X ). The second approach
follows the revolutionary perspective introduced by Bensaid et al. (1992) in
the transaction costs literature, and identifies the bounds of a continuum of
arbitrage-free prices of the claim; such bounds correspond to the so-called
‘dominating’ strategies rather than the standard duplicating strategies of the
complete markets case.!> Such an approach can be extended to any well be-
haved situation in which markets are incomplete; see, for instance, Cvitanic et

al. (1997) for an application to models with stochastic volatility. All such more
general issues are not treated here.

1.3.2 THE TERM STRUCTURE OF INTEREST RATES

Despite the increased importance played by stochastic volatility in financial
economics, only a few theoretical term structure models take into account
such a phenomenon in the same fashion as one has observed for the European
option pricing theory in the last decade.

A notable exception is the early equilibrium model of Longstaff and Schwartz
(1992), in which the instantaneous interest rate is a linear combination of two
factors, thus generating a two-factor model & la Cox et al. (1985a). Since volatil-
ity was driven there by the same Brownian motions driving the instantaneous
interest rate, however, volatility acted in a way that is rather different from
the one that is usually thought of in the traditional stochastic volatility liter-
ature, where volatility is typically not adapted to the filtration generated by
the Brownian motion driving the observables. In fact, in one of the first empir-
ical studies devoted to these issues, Andersen and Lund (1997a) convincingly
propose to extend a model studied in Chan et al. (1992):

dr(t) = (¢ — Or(t))dt + &r(t)"dW (1), (1.14)
where ¢, 8,7, 7 are real parameters, so as to incorporate a stochastic volatility
factor in the following manner:

dr(t) = (v—0r(t))dt + o(t)r(t)"dW V(1) 1.15
dlogo(t)? = k(a - loga(t)?)dt + »dW (1) (1.15)

| 150ne bound is the minimum cost that is needed to obtain at least the same payoffs

'as those promised by the claim. The other bound is obtained by using a symmetric
largument. )
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where k, a, 1 are real parameters that guarantee the existence of a solution to
1.15).
( Mo)del (1.14) is a univariate generalization of the square-root model of Cox
et al. (1985a) model, which sets n = % In general, n > 0 makes interest
rate volatility increase with the interest rate level. This is the so-called ‘level-
effect’: as is clear, the parameter 7 measures the sensitivity of the instantaneous
volatility to the level of the interest rate; in fact, Chan et al. (1992) suggest
that 7 > 1 is empirically more plausible than < 1. The drawback of model
(1.14), however, is that it can not accommodate for the autocorrelation of
volatilities in the fashion described in the preceding section. In contrast, this
is not the case of a model like (1.1) or (1.15): as Andersen and Lund pointed
out, a representation such as (1.15) is ad hoc, but it is also in accordance with
“similar formulations for general financial time series”, such as those pre?entedj
in the preceding subsection. 1.
On a theoretical standpoint, Fong and Vasicek (1991), Fornari and Mele
(1994, 1995) or Chen (1996) have primitives with a more traditional stochastic
volatility flavor than the model of Longstaff and Schwartz (1992), for they
propose that the short term interest rate is the solution of:®

dr(t) = (c—6r(t)dt+o(t)r(t)"dWD(t) (1.16)
do(t)? = x(a—o(t)2)dt + po(t)dWD(2) '

or:

dr(t) = (c—0r(t))dt+o(t)dW(t)

do(t)2 = k(a—o(t)?)dt + ¢o(t)2dWP(¢)
The latter formulation appeared in our 1994 and 1995 papers, and was moti-
vated by the fact that it represents the diffusion limit of an AR(1)-GARCH(1,1)
process of the short term interest rate. Its main inextricable disavantages are
that: (1) the short term interest rate can attain negative values; and (2) the
model does not take account of the level effect.!” Furthermore, that model
was estimated via identification techniques & la Nelson, without controlling
the adequacy of the approximating model via the consistency tests that will
be succinctly presented in chapter 5. Qur papers were written much before the
date they were published and we did not have the same powerful techniques
of today for estimating the parameters of a system of stochastic differential
equations: such techniques are going to be discussed succinctly in the following
section (see chapter 5 for a technical presentation).

The common theoretical drawback of the models of Fong-Vasicek, Fornari-

Mele and Chen is that they do not arise from an equilibrium theory determining

6parametric restrictions in these models were as follows: in Fong-Vasicek, y =0,
and in Chen, v = % Actually the Chen’s model is more general than (1.16) for it
allows % to follow a third diffusion model.

17Brenner et al. (1996) presented a discrete-time ARCH model that took care of
the level effect.
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the risk-premia demanded by agents to be compensated for the stochastic
fluctuations of (r,0?).18

In chapter 4, we present an equilibrium model that attempts to overcome
the preceding critiques. Its concern is to find economies in which generalized
versions of systems like (1.1), (1.15) or (1.16) can be viewed as the equilibrium
data generating process, and as a by-product of this we provide the partial dif-
ferential equation that has to be followed by the equilibrium price of a default
free bond. The approach that we follow is close to the framework of Cox et al.
(1985b), with the exception that we replace linear activities with stocks.!® As
in Longstaff and Schwartz (1992), the primitives of the economy include two
factors, but instead of generating equilibria in which the instantaneous interest
rate is a linear combination of the factors, we specify the factor dynamics in
a way that allows for the equilibrium short term rate to be linear in the first
factor only. Stochastic volatility of the kind considered in this section then sim-
ply emerges because the first factor exhibits stochastic volatility—interpreted
as the second factor—that is not adapted to the filtration generated by the
Brownian motion driving the first factor. The model is derived under standard
preference restrictions of a representative agent. Specifically, we assume loga-
rithmic utility and find an equilibrium by using standard dynamic program-
ming techniques. Such assumption and techniques are made for pedagogical
purposes only. In Fornari and Mele (1999a), the model is solved by assuming
a CRRA utility function and utilizing martingale techniques within a more
pronounced general equilibrium framework.

To conclude, we would notice that the approach that is favored here might
appear to be in contrast with the approach that we are following in our Eu-
ropean option pricing empirical studies, where we do not assume any prior
pertaining to the preferences of agents; see chapter 3. It has to be reminded,
however, that apart from the work of Longstaff and Schwartz (1992), we do
not know of any paper dealing with continuous time stochastic volatility mod-
els of the term structure in a fully articulated equilibrium framework: as ex-
plained above, it is instead a common practice to impose specific, non-flezible
functional forms to otherwise unidentified risk-premia. However, imposing ad
hoc risk-premia that rule out arbitrage opportunities would be an interesting

®*In a subsequent paper, Andersen and Lund (1997b) try to examinate the con-
sequences of their model (1.15) on the term-structure of interest rates. As in the
early contributions of Fong-Vasicek, Fornari-Mele and Chen, the authors’s specifica-
tion of the risk-premia is ad hoc. In addition to this, however, Andersen and Lund
Ipropose a three-factor model where the “long term” interest rate is another stochas-
tic process—as in previous work of Chen—, and solve their model via Monte Carlo
'techniques.

1%Such a modification essentially serves to jointly determine the dynamics of the
Istock price, which will be compared to the ones that are typically posited in the
stochastic volatility pricing literature on European options.
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agenda if the corresponding functional forms were general enough, especially
when the final purpose of the researcher is to fit cross-sectional information. As
noted, this is not the case of the above cited papers, but rather than undertak-
ing such an objective, we preferred to pursue the more modest, yet logically
preliminary task of developing more theory on the determinants of the risk
premia within simple preference restrictions, which is for the moment more
than an under-developed area. Naturally, one extension of our work would
consist in applying a flexible, data-oriented approach to the determinants of
the risk-premia, in the vein of our empirical work in the stochastic volatility
option pricing area where, instead, it is now well-understood how risk-premia
are affected by standard preference restrictions.

1.4 Statistical inference?®

A recurrent difficulty arising in econometrics concerns the estimation of mod-
els giving rise to criterion functions that have no manageable analytical ex-
pressions. In modern finance theory, for instance, models are typically set in
continuous time. Such a choice is justified by the fact that in continuous time,
powerful mathematical techniques?! exist, which have no counterparts in dis-
crete time.2? The resulting models are often diffusion processes, but jump dif-
fusion processes are also part of a traditional research program. Furthermore,
non-Markovian models have also been proposed, both in the term structure
of interest rates (e.g., Heath et al. (1992), Comte and Renault (1996) (section
4.1)) and in the option pricing literatures (e.g., Comte and Renault (1998)).
In this monograph, we constrain ourselves to Markovian models.

Apart from special cases such as the celebrated Black-Scholes or the Cox et
al. (1985a) models, theoretical financial models typically give rise to transition
and/or ergodic distributions for the observables that are not known explicitly,
since these are solutions to parabolic partial differential equations that can only
‘be solved numerically. Hence, the likelihood function implied by the measure
induced by a discretely sampled diffusion can not be calculated explicitly.23

‘ 20This section is motivated by our applied research work on the estimation of
the parameters of stochastic differential equations for the short term interest rates.
|Applications of the material discussed herein to stock returns, for instance, can be
conceived in a straight forward manner. Furthermore, surveys that are more focussed
on option pricing issues include Taylor (1994), Ghysels et al. (1996) and Shephard
(1996).

*1Essentially: stochastic calculus and elegant dynamic programming techniques and
measure theory.

**See, however, Campbell et al. (1997) (chapter 11) for a survey of some interest-
ing discrete time interpretations of continuous time models of the term-structure of
interest rates.

*Following Lo (1988), ML estimation might also be feasible if the transition density
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Accordingly, the proposed methods rely on nonparametric density estimation
(e.g., Ait-Sahalia (1996a,b)) and/or closed-form approximations of the true
(unknown) likelihood function of the discretely sampled diffusion (Ailt-Sahalia
(1998)), on generalized method of moments (e.g., Hansen and Scheinkman
(1993), Conley et al. (1997)), or on the indirect inference principle.

Methods based on the indirect inference principle are particularly well suited
to problems where the state is not fully observed, as it happens in the case
of models with stochastic volatility. The quintessence of the methods relies on
the simulation of the theoretical model. Its philosophy consists in comparing
data simulated from the theoretical model with real data. If the model is a
good description of reality (insofar as we are willing to accept the imperfec-
tions of any model!), then there'should exist values of its parameters that make
simulated data from that model ‘resembling’ to real data. On the statistical
point of view, it is precisely the way how we think about comparing the two
data sets that generates the so-called auriliary criteria. In a classic contribu-
tion devoted to applied macroeconomics, for instance, Kydiand and Prescott
(1982) generated simulated moments from artificial economies corresponding
to their models, from which they constructed reasonable ‘confidence bands’
that contained the sample-based moments corresponding to the US economy.
The authors concluded that their model was a successful description of reality.

In a sense, the Kydland-Prescott procedure can be thought to be one of
the latest antecedents of the modern simulation-based econometric techniques;
Marcet (1994) has an excellent discussion concerning this point. The Kydland-
Prescott techniques, however, did not insist on the formal statistical testing
aspect of the story, which is of course a central issue of the modern methodology
(see the debate of Kydland and Prescott (1996), Hansen and Heckman (1996)
and Sims (1996)).

Back to finance, one of the first empirical study in which simulation-based
methods were applied to estimating continuous time models of the short term
interest rate was conducted by Broze et al. (1995a), who consider estimating a
slightly more general version of the Chan et al. (1992) model (1.14): apart from
methodology, one of the objectives of this study was to find empirically flexible
functional forms of the diffusion of the short term interest rate, as opposed to
the simple square root process of Cox et al. (1985a). It is instructive to remind
that the issue of functional flexibility of the diffusion function of the short
term interest rate has been pushed to the extreme by Ait-Sahalia (1996a), who
estimated such a function nonparametrically. The basic idea can be explained

of the observables could be computed easily. When this is not the case, ML becomes
computationally demanding. In the continuous time stochastic volatility case, for
instance, ML would require to implement a numerical solution to a multi-dimensional
partial differential equation at each iteration of the optimization algorithm. The
likelihood would then be obtained by integrating out with respect to volatility.
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as follows. Consider the following data generating process,
dr(t) = u(r(t); 0)dt + o(r(t))dW(t)

where, in the preceding notation, only the drift u(r; 8) has been parametrized
with 6: the function o has to be estimated non-parametrically. Now it is well
known that if r has a stationary distribution, denoted as =, that has support
in the extended positive line and boundary condition 7(0) = 0, 7 is then the
solution of the following ordinary differential equation:

u(r; 0)m(r) = %g;(a(r)zw(r)), 7(0) = 0.
The key observation now is that in lieu of solving for 7 for a given 02, one may
also choice to integrate the preceding equation for a given 7 and obtain:

o(r)? = %r) Jo ulx; 8)m(z)dz.

After plugging in the preceding relation a non-parametric estimation of 7 ob-
tained by standard methods (see, for instance, Hirdle and Linton (1994)),
one can obtain an estimate of ¢2 in a non-parametric way in correspondence
of a given choice for u. As concerns the drift function, Ait-Sahalia estimated a
linear function in his original paper, but one can also add nonlinearities such
as those considered in Ait-Sahalia (1996b) in a different context; see, also, Con-
ley et al. (1997) or Stanton (1997) for related work. Issues pertaining to the
nonlinearity of the drift function of the short term interest rate will be shortly
presented in chapter 4.

As is clear, the preceding ideas are particularly interesting to apply to sys-
tems in which the state is completely observable: one of the main advantages
of such an approach, indeed, is that it does not require any simulation of the
system.?® In contrast, this monograph deals with systems in which the state
is partially observed due to the presence of stochastic volatility. This is one
explanation for our choice of estimating continuous time stochastic volatility
models via indirect inference.

A second explanation has been put forward in the introductory section of this
chapter. Despite the great progress that has been made in the last decade in the
estimation of the parameters of stochastic differential equations systems, one
important aspect of our empirical research agenda is to understand to which
extent ARCH models can be used as reliable approximators of continuous time
stochastic volatility systems. Specifically, the quality of the filtering properties
of ARCH models is now well-understood and, as stated in the introductory

**Hansen and Scheinkman (1995) and Ait-Sahalia (1998) also provide methods that
are simulation-free. Again, such approaches are particularly well-suited to problems
in which the state of the model is completely observable.
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section, it has been further confirmed in a simulation study in Fornari and Mele
(1999a) conducted in correspondence of a diffusion designed for the short-term
interest rate dynamics (cf. eq. (1.1)). In contrast, there is no empirical work
dealing with the quality of the approximation to the parameters of stochastic
differential equations systems that is delivered by the moment conditions under
which ARCH models converge to their continuous time counterparts. Now it
turns out that one interesting way to address such an issue on a solid statistical-
sounded basis just requires the simulation-based techniques that are associated
with the indirect inference principle. Let us explain why.

As is clear, the preliminary step of any simulation-based method consists in
an appropriate choice of the auxiliary criterion with which comparing real data
with simulated data. In the context that is studied here, a natural auxiliary
criterion can be based on the parameters’ estimates of an ARCH model fitted
to the available data.? In some cases, the estimation strategy would consist in
finding parameters values of the continuous time model generating simulated
data that, once sampled at the same frequency of the available data, can be
fitted with ezactly the same ARCH model that fitted the real data: this would be
a just-identified problem. When, instead, the discrete time ARCH model has
more parameters than the continuous time model, one obtains a classical over-
identified problem, and the indirect inference estimator would now minimize
an appropriate distance between the two sets of discrete time parameters (i.e.,
the parameters of the model applied to the observed data, and the parameters
of the model applied on the simulated data).

The estimation strategy that we follow in our applied work focusses on the
methodologically simple but empirically difficult just-identified case, in which
the number of parameters of the discrete time model is equal to the num-
ber of parameters of the continuous time model. Naturally, our strategy does
not spring out of nowhere and uses statistical techniques that were originally
suggested in the seminal paper of Gouriéroux et al. (1993) (p. S108):

“[Indirect inference] methods seem particularly promising when the
criterion is based on approximations of the likelihood function, time
discretization, range discretizations, linearizations, etc. In this case
the method is simpler [...] and appears as an automatic correction
for the asymptotic bias implied by the approximation.”

It is clear how to identify the source of “the asymptotic bias impliéd by the

Z5Engle and Lee (1996} is the first paper we know in which ARCH models were
exploited as direct and/or indirect devices for approximating stochastic differential
equations. While the authors were concerned with stock returns data only, they also
suggested (p. 352) to extend the Cox et al. (1985a) model to a setting with stochas-
tic volatility of the kind described in the preceding section. As pointed out before,

Andersen and Lund (1997a) is one of the first empirical studies that accomplished
such a task.
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approximation” in our context: as we reminded in the introductory section,
most ARCH models are not closed under temporal aggregation, which suggests
that using moment conditions ensuring the convergence towards a contim..xous
time model should introduce an “asymptotic bias implied by the approxima-
tion” or, more correctly said, a disaggregation bias. Yet, ARCH models stiil
have a natural interpretation in terms of the continuous time models tha.t' are
supposed to approximate, since they are very close (in terms of the probability
distributions generating them) to the continuous time models when the sam-
pling frequency is high. Furthermore, it turns out that we are also endowfved
with a natural one-to-one interpretation of the sequence of the discrete time
parameters of the auxiliary models in terms of the parameters of the continu-
ous time model (see chapter 5 for technical details): as is clear, we exactly are
in the position precognized by Gouriéroux et al. (1993), and we are only‘left
with testing and correcting potential disaggregation biases. .
The appropriate testing procedure has been designed within the logic of
the indirect inference principle. It is based on testing procedures originally
suggested by Gouriéroux et al. (1993) (section 4.2) that can be viewed as
the natural substitutes of global specification tests in just-identified problems.
Chapter 5 presents a technical description of the test, as well as the. techni-
cal justification of it within our framework; it also succinctly describes t.he
empirical results of Fornari and Mele (1999a), where it is shown that the dis-
aggregation bias of fitting an ARCH model to weekly US interest rate dt}ta
is not significant on the basis of that test. This is a particularly interesting
empirical result. The simple reason is that Drost and Nijman (1993) construc-
tively showed that ARCH models aggregate only when one weakens the concept
of an ARCH model, which led the authors to introduce the so-called weak-
ARCH process; more importantly, Drost and Werker (1996) generalize.d t!xe
Drost-Nijman setting and introduce the so-called GARCH diffusion whlch.ls,
heuristically, the continuous time stochastic volatility process whose implied
discrete differences form a weak-ARCH process. More precisely, a continuous
time process {y(t)}:>0 is a GARCH diffusion if its implied differences process
{(A¥Un(k+1) — AYRR)} 52y kk <t < h(k+1), is weak-GARCH foF any h > _0, ie.,
if there exist a sequence of parameters (wy, ax, O5) and a covariance-stationary
process,
hOak =Wh +0n - wYak_1y + Br AOak-1» (1.17)

that is the best linear predictor of (hynx — a¥nk-1))? inzterms of 1,‘;.03 and
lagged values of (nyak — n¥n(k-1)) and (h¥ax = a¥n(r-1))*. Take, for instance,
the following diffusion,

dy(t) = o(t)dW(¢t)

. - Py ST . (1.18)
do(t)? = 8w —o(t)?)dt + V200 (t)2dW (1)

where 8, w, A are parameters that satisfy § > 0,w > 0 and A € (0,1). Drost and
Werker (1996) (prop. 3.1 p. 37) then show that there is a continuous mapping
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with an inverse from the parameters of the continuous time model (1.18) on
to the parameters of the discrete time model (1.17).

We believe that the most natural interpretation of our empirical findings
is that even though the ARCH models we use do not aggregate, they still
remain, for a given frequency, an excellent approximation to the continuous
time models towards which they converge in distribution, at least insofar as
they are a natural proxy to the weak-ARCH models. Naturally, these are issues
that deserve a deep theoretical investigation that we leave for further research.

A second way to implement the indirect inference principle has a rationale
that is different from the one outlined above. Its main feature is to select, as
an auxiliary device, an highly parametrized discrete time model that is used
with the main purpose of calibration. Such an auxiliary model then generates
a score (hence referred to as ‘score generator’), and the objective becomes to
search for the values of the parameters of interest that make such a score as
close as possible to zero by using a long simulation of the theoretical model.
Such a method has been introduced by Gallant and Tauchen (1996), and is re-
ferred to as efficient method of moments (EMM): heuristically said, the source
of asymptotic efficiency comes here from the fact that if the true likelihood
function is embedded in the density associated with the auxiliary model, then
the EMM estimator achieves the same efficiency of the true ML estimator.26 In
practice, an embedding density can be built-up by providing additional param-
eters to the discrete time model with a semi-nonparametric (SNP) expansion
of the distribution of the residuals by means of Hermite polynomials. In fact,
as subsequently shown by Gallant and Long (1997), if the score generator is
such an SNP, the efficiency of the EMM estimator can be made as close to
the ML one as desired by taking the number of the auxiliary parameters large
enough. One of the earliest applications of the EMM techniques to models of
the stock prices with continuous time SV is in Gallant and Tauchen (1997), and
the first application of EMM theory to continuous time SV models of the short
term interest rate is in Andersen and Lund (1997a,b). Gallant and Tauchen
(1997) also consider the application of EMM to interest rates models that have
not stochastic volatility, while Gallant et al. (1997) apply the EMM technique
to the discrete time SV models that have been succinctly presented in section
1.2.1. In all these applications, the score generator had a nonparametric density
which also accommodated for an ARCH-type scale function.

2In this book, we are adopting the convention to include the EMM theory of
Gallant and Tauchen (1996) as a part of the indirect inference principle.
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1.5 Plan

Before giving the plan, it is useful to clarify what the following four chapters are
and what are not: the rest of the monograph is intended as a succinct account of
our past as well as ongoing research program in which we try to isolate our own
contribution. Hence, the following chapters do not include extensive surveys
on the state-of-the-art of the topics we treat. We only constrain ourselves to
refer the reader to already published surveys or, when these are not available,
provide a list of the papers that are related to our work, without however
delving into the details. o

Chapter 2 is devoted to a systematic presentation of our approxima’t,io!i‘
results obtained in correspondence of some of the ARCH models presented in
section 1.2. In addition to provide results that are useful when formulating and
empirically implementing continuous time models with stochastic volatility,
our objective also lies in finding results that can be useful up to a first order
approximation treatment of the steady-state probabilistic properties of such
models in discrete time.

Chapter 3 analyzes a few problems arising from the incomplete markets
structure that is generated by the presence of continuous time stochastic volatil-
ity; our primary focus is on European-type options; we make use of a model
with diffusion state variables. Although markets are incomplete insofar as one
restricts attention to the primitive assets of the economy, the option itself can
be taken to complete the markets; as a consequence of this, the risk premia de-
manded by agents to be compensated for the stochastic fluctuations of the state
variables of the economy can be found via the preferences of a representative
agent. As we mentioned in section 1.3.1, we then illustrate how we are currently
attacking the problem: instead of imposing a functional form generated by a
specific preference structure of a representative agent, as we do for the term
structure model in chapter 4, we take the volatility risk-premium as a nonlin-
ear function of the state variables of the model (i.e., a ‘volatility risk-premium
surface’), that can subsequently be estimated using cross-sectional information
derived from option prices. One of the final objectives of the chapter is to pro-
vide a short description of hedging strategies that can be implemented within
an economy with continuous time stochastic volatility. By delving into the
simplest versions of the literature on risk-minimizing strategies—as opposed
to the standard risk-neutralizing strategies d la Black-Scholes—we provide de-
tails concerning the construction of strategies for partial hedging in incomplete
markets in the general version of the model, by focussing then on its stochastic
volatility restrictions.

Chapter 4 presents a succinct overview of the theory of the term structure
of interest rates within Markovian economies, and focusses essentially on the
ramifications generated by ‘injecting’ stochastic volatility features into them.
It then imposes restrictions to the model with diffusion state variables of chap-
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ter 3, and develops a class of equilibrium models in which the instantaneous
interest rate exhibits stochastic volatility that is imperfectly correlated with
the instantaneous interest rate level itself. As concerns the statistical inference,
this chapter also provides a very first illustration of simulation-based econo-
metric techniques that can be applied to estimate continuous time models of
the short term interest rates. Furthermore, it explains the role played by the
linearity of the diffusion functions of the state variables of the economy to as-
sist in getting tractable models: our discussion will thus concern a very special
case of the well-known literature on affine models of the term structure.
Chapter 5 presents in detail the econometric techniques that are required
to make estimation and testing procedures applied to the parameters of our
theoretical model of the term structure of interest rates. These techniques are
based on a combined use of the approximation results of chapter 2 and the
indirect inference principle. This chapter also presents methodology to obtain
the solution of our theoretical model of the term structure of interest rates
with stochastic volatility. We follow two approaches. In the first one, we use
the Crank-Nicholson scheme to numerically integrate two-dimensional partial
differential equations that typically accommodate for stochastic volatility; a
Matlab code to implement the solution of our model is available upon request
(our code takes approximately 1 minute to obtain the solution with Matlab 4.2
on a Pentium II 366 MHz with 64 Mbytes of memory). While the code has been
specifically designed for solving our term structure model, only minor changes
are required for that code to be used to solve related problems (e.g., models
with different drift or diffusion functions and/or computation of transition
measures in continuous time). Finally, we show how to implement a second,
| less traditional approach that is based on a method of iterated approximations.

2

CONTINUOUS TIME BEHAVIOR OF
NON LINEAR ARCH MODELS

|
2.1 Introduction

This chapter presents convergence results for the A-PARCH model (1.6) that
was originally proposed by Ding et al. (1993). We remind that in addition to
be a particular convenient tool to model volatility asymmetries, such a model
imposes a sort of Box-Cox power transformation to the conditional standhrd
deviation. According to this model, the ‘volatility concept’ is thus not imposed
a priori by the modeler, but it has to be estimated from data. By assuming
that such a transformation is the same at every sampling frequency, we derive
continuous time results for model (1.6). Such results are useful for three main
reasons: (1) they help formulating continuous time models that are flexible
with respect to the choice of the volatility concept (see chapter 5); (2) they
provide a simple identification device through which estimating the correlation
process between a continuous time asset price process and its instantaneous
volatility; (3) they help understanding the role played by the volatility concept
in determining the long run behavior of the error process of the model.

The chapter is organized in the following manner. The approximation results
for model (1.6) are in the following section; section 2.3 contains comments con-
cerning the moment conditions that are needed to guarantee the convergence
of the discrete time model; section 2.4 provides a primer on the connection be-
tween the approximation results and option pricing; section 2.5 is devoted to
the study of the stationary distribution of the A-PARCH models innovations;
section 2.6 provides continuous time results for the VS-ARCH model (1.9), but
the analysis there is not as deep as the analysis conducted for model (1.6). The
appendices contain technical material.

2.2 Approximation results for a general class of non
| linear ARCH models

If h denotes the sawuplisg luter val, we pastition tune 1n (1.6) In a way that
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