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SUMMARY

This paper develops two conditionally heteroscedastic models which allow an asymmetric reaction of the
conditional volatility to the arrival of news. Such a reaction is induced by both the sign of past shocks and
the size of past unexpected volatility. The proposed models are shown to converge in distribution to
absolutely continuous ItoÃ di�usion processes, as happens for other heteroscedastic formulations. One of the
schemes developed in the paperÐ the Volatility-switching ARCHÐdi�ers from the existing asymmetric
models insofar as it is able to capture a particular aspect of the behaviour of the volatilities, i.e. the reversion
of their asymmetric reaction to news. Empirical evidence from stock market returns in six countries shows
that such a model outperforms traditional asymmetric ARCH equations. # 1997 by John Wiley & Sons,
Ltd. J. appl. econom. 12: 49±65, 1997.
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1. INTRODUCTION

Since Engle's (1982) and Bollerslev's (1986) seminal papers, ARCH (AutoRegressive Condi-
tional Heteroscedastic) models have been widely employed in the analyses of ®nancial markets.
The e�ects of heteroscedasticity have been evidenced especially for high-frequency returns,
whose distributions are heavy-peaked and tailed.1

The original ARCH model posits the existence of a relation between past squared innovations
of an observation assets returns changes model and their current conditional variances. Let et be
the innovation of an observation model; then, the GARCH(1,1) model assumes that et is
conditionally normal with variance changing through time in a fashion which resembles a
restricted ARMA process, i.e.

et j I tÿ1 � N�0; s2t � �1�

s2t � a0 � a1e
2
tÿ1 � bs2tÿ1 �2�

where a0 > 0; a1; b5 0 are real, non-stochastic parameters and Itÿ1 is the information set
dated t ÿ 1.

A shortcoming of the GARCH model is that the sign of the forecast errors does not in¯uence
the conditional variance, which may contradict the observed dynamics of assets returns. Black
(1976), for example, noted that volatility tends to grow in reaction to bad news (excess returns
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lower than expected), and to fall in response to good news (excess returns higher than expected).
The economic explanation given by Black is that negative (positive) excess returns make the
equity value, hence the leverage ratio, of a given ®rm increase (fall), thus raising (lowering) its
riskiness and the future volatility of its assets. This phenomenon has consequently come to be
referred to as the leverage e�ect (Pagan and Schwert, 1990; Campbell and Hentschel, 1992).

The basic attempts to include such features of the returns of ®nancial assets into a convenient
econometric framework are the Exponential ARCH model of Nelson (1991), the Threshold
ARCH model of ZakoõÈ an (1994) and Rabemananjara and ZakoõÈ an (1993), the Asymmetric
Power ARCH model of Ding et al. (1993), and the Stochastic Variance model of Harvey et al.
(1994), or Harvey and Shephard (1993a,b). All such models include the sign of past forecast
errors as conditioning information for the current values of the conditional variance.

The main concern of this paper is to develop heteroscedastic formulations which turn out to be
useful in modelling the statistical properties of ®nancial data. It improves over previously
developed models for two main reasons:

. First, it develops a class of asymmetric ARCH models in which volatility is in¯uenced by the
sign of previous shocks and the unexpected volatility induced by such shocks.

. Second, it derives the asymptotic properties of such models, useful in the estimation of
continuous time models recently developed in ®nance (see e.g. Hull andWhite, 1987; Longsta�
and Schwartz, 1992; Fornari and Mele, 1995b).

With concern for the ®rst issue, we propose two new models. In the ®rst the intercept of the
volatility equationÐ a0 in equation (2)Ð is allowed to change according to the sign of previous
shocks, so capturing the asymmetry of the conditional volatility within a simple traditional
GARCH structure. Since the model is closely related to the Sign Conditional Autoregressive
Model reported in Granger and TeraÈ svirta (1993), it will be referred to as Sign-switching ARCH.
However, there are reasons to believe that factors other than the sign of past shocks are
responsible for the asymmetric behaviour of volatilities. To examine such an opportunity, we
propose a modelÐ the Volatility-switching ARCHÐwhich captures asymmetries via the
impact of past shocks on the level of the volatility, rather than through the unexpected returns.
Unlike previous models, it is able to capture an already observed phenomenon, the reversal of
asymmetry, which will be de®ned in the next paragraph.

Second, it has been widely recognized that many of the GARCH models developed so far
admit a continuous time representation, thus being useful also to estimate continuous time
models employed in ®nance. Following this stream of research, analogous results are presented
for the GARCH models hereby developed, as well as for other discrete time ARCH models.2

The paper is structured as follows. The next section deals with the Sign-switching and the
Volatility-switching ARCH models and derives the expressions of their ®rst four moments. We
conclude the section by presenting weak convergence results for the Sign-switching ARCH, the
Volatility-switching model and the Glosten et al. (1993; henceforth GJR) model. Section 3
presents our empirical results. Evidence from six daily stock market indices unambiguously
shows that the Sign- and Volatility-switching ARCH models successfully detect asymmetriesÐ
and reversalsÐ in the time series of the conditional volatility. Section 4 presents conclusions.
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2. SIGN- AND VOLATILITY-SWITCHING ARCH MODELS

2.1. The Structure of the Models

In the Sign-switching ARCH model we capture the asymmetric reaction of the conditional
variance to shocks of di�erent sign through the sign of such shocks. Let et be a (scalar) innova-
tion of a given (unidimensional) observation model. The Sign-switching GARCH(p, q, y) model
then assumes:

et � ztst; et j Itÿ1 � N�0; s2t � �3�
s2
t � w �

X
i�1;...;p

bi s
2
tÿ i �

X
j�1;...;q

aj e2tÿ j �
X

x�1;...;y
Fx stÿx �4�

st � � 1 if et > 0 �5a�
st � 0 if et � 0 �5b�
st � ÿ 1 if et < 0 �5c�

where p, q and y5 0, w, aj � j � 1; . . . ; q�, bi �i � 1; . . . ; p� and Fx �x � 1; . . . ; y� are real, non-
stochastic parameters, satisfying w > 0, aj 5 0, bi 5 0 and, ®nally, jSxFx 4 w j ; such
constraints guarantee that the process fs2t g almost certainly remains positive.
Throughout the paper we will con®ne ourselves to the special case p � q � y � 1, so that

equation (4) reduces to:

s2
t � w � bs2

tÿ1 � ae2tÿ1 � Fstÿ1 �6�

It is straightforward to see that according to equations (3)±(6) one captures asymmetric
responses of the volatility to positive and negative shocks3 since, when F < 0, negative (positive)
shocks observed at t ÿ 1 will be associated with a higher (lower) level of the volatility at t.

The second and fourth unconditional moments of the innovations of the Sign-switching(1,1,1)
model are (see Appendix 1):

E�e2� � w �1 ÿ a ÿ b �ÿ1 �7�

E�e4� � 3
�w2 � F2��1 ÿ a ÿ b � � 6w2�a � b�
�1 ÿ a ÿ b� �1 ÿ a2 ÿ 3b2 ÿ 2ab� �8�

While the second unconditional moment coincides with that of a GARCH(1,1) (Bollerslev,
1986), the fourth is also a function of F; hence, the stronger the asymmetric e�ect, the higher the
unconditional fourth moment. Such a feature helps capture a widely recognized characteristic of
®nancial returns, i.e. high excess kurtosis. The coe�cient of kurtosis, k, can be derived directly
from equations (7) and (8) and turns out to be

k � 3 �1 ÿ a ÿ b �2 �w2 � F2� � �1 ÿ a ÿ b �6w2�a � b �
w2 �1 ÿ a2 ÿ 3b2 ÿ 2ab � �9�

It is an increasing function of F, so that the Sign-switching ARCHmodel interprets high kurtosis
also as the consequence of the asymmetric behaviour of the volatility (beyond its persistence).
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According to recent empirical evidence reported in Rabemananjara and ZakoõÈ an (1993), the
Sign-switching ARCH model might be unsuccessful in detecting some of the non-linear charac-
teristics of the volatility dynamics. In factÐas the authors point outÐhigh negative shocks
increase future volatility more than high positive ones whileÐat the same timeÐsmall positive
shocks too often produce a stronger impact on future volatility than negative shocks of the same
size. Thus, following the occurrence of a shock of a certain size, the asymmetric behaviour of the
volatility might become reversed; the modeling of this feature is the focus of the remainder of the
paper.

First, we de®ne the size of the shock at which the reversal occurs, which also helps to clarify
why the asymmetric behaviour of the volatility may eventually change direction. The `size
measure' which we employ in this paper is the level of unexpected volatility generated by a shock
at time t ÿ 1�etÿ1�. Conditionally on the information set dated t ÿ 2, the expected value of e2tÿ1 is
s2
tÿ1. If, however, e

2
tÿ1 5s2

tÿ1�4s2
tÿ1�, we shall say that etÿ1 has generated (at time t ÿ 1� a

level of volatility higher (lower) than expected (at time t ÿ 2�. Consider now a very small negative
shock at time t ÿ 1. If it produces a level of volatility at time t ÿ 1 lower than expected at time
t ÿ 2, there should be no reason to believe that volatility at time t will increase as a consequence
of the leverage e�ect. Roughly speaking, a small negative shock which generates lower volatility
than expected may be regarded as good news; at the same time, positive shocks which generate
lower volatility than expected may be regarded as relatively good news. This explains the
mechanism according to which the reversals originate.

Let us now analyse more formally what may originate reversals. Black (1976) and Nelson
(1991) observed that a negative shock on the stock of a given ®rm raises both its leverage ratio
and its riskiness. As a result of this, the volatility of the stockÐa measure of the riskiness of the
®rmÐwill increase as well; the opposite happens in the case of a positive shock. The two
componentsÐ taken togetherÐgive rise to the leverage e�ect. However, it is worth noting that
changes of the leverage ratio are likely to be followed by changes in the expected performance of
the ®rm, the latter being a function of the di�erential between the expected average performance
of the sector in which the ®rm operates and the overall cost of debt. Suppose that the economy
has k productive sectors; thus

ij � rk � pkyj �10a�
pk � rk ÿ r �10b�
yj � D=Sj �10c�

where ij , Sj and yj are, respectively, the expected pro®tability, the price of the stock and the
leverage ratio of the jth ®rm in the kth sector, r the interest paid on debt, rk the average
performance of the kth sector �k � 1; . . . ;K � and D the amount of debt. Such a relation can be
found in Modigliani and Miller (1958, proposition II, p. 271).

Consider the case that pk > 0 in equation (10a). Then, a negative shock on Sj may be regarded
as more favourable than a positive shock; in fact it increases yj and the expected pro®tability of
the ®rm. However, if the negative shock is very large, two things may be hypothesized to happen:
®rst, economic agents may discount a recession of the kth sector, i.e. a fall of rk; second the cost
of the debt may be thought to start rising sharply for the jth ®rm, which happens when r is
positively related to yj (hence inversely related to Sj ).
Both events are likely to a�ect the sign of pk hence causingÐaccording to the explanation

given aboveÐreversals of the asymmetric reaction of the conditional volatility to the sign of
past shocks. However, when the sign of pk changes (and as long as it stays positive) negative
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shocks of a modest size will induce less volatility than positive shocks of a similar size, according
to equation (10a).

Past research has generally overlooked the impact of previous (unexpected or expected)
volatility on its current expected level. Engle and Ng (1993), for example, propose to analyse the
impact of news on the current conditional variance (i.e. on s2t �, keeping constant the information
dated t ÿ 2 and earlier, with all the lagged conditional variances evaluated at their unconditional
value.

To de®ne such issues formally, let vtÿ1 � vtÿ1�etÿ1� denote the (measurable) amount of
unexpected volatility at time t ÿ 1, generated by a shock occurred at time t ÿ 1�etÿ1�. Let f �vtÿ1�
be some deterministic and measurable function mapping vtÿ1 onto the current conditional
volatility. Then, if g�etÿ1; j etÿ1 j ; sign�etÿ1�� is a deterministic, asymmetric and measurable
response function of the current conditional volatility with respect to both size and sign of etÿ1,
other things equal, all the asymmetric ARCH models so far proposed in the literature focus
mainly on modeling g( . ) rather than f( . ).

In order to take into account the impact of past unexpected volatility on future expected
volatility, one has to build plausible functional forms for f �vtÿ1�, thus providing a model for the
response function of the future expected volatility to past unexpected volatility; the latter would
parallel the notion of `news impact curve' of Engle and Ng (1993).

In this paper we will assume that f �vtÿ1� is proportional to vtÿ1. Consider, for example, the
following model:

s2
t � w � ae2tÿ1 � bs2

tÿ1 � stÿ1 vtÿ1 �11a�

where stÿ1 is de®ned by relations (5a±c) and

vt � d0e2t ÿ d1s
2
t ÿ d2 �11b�

so that vt is a linear combination of the di�erence between the observed conditional volatility �e2t �
and its estimate, based on the available set of information, thus playing a role similar to that of
an error-correcting variable. In the remainder of the paper, we will refer to model (11a,b) as
Volatility-switching ARCH (henceforth VS).4

If vtÿ1 < 0, then, ceteris paribus, negative shocks generate more volatility than positive ones.
However, if vtÿ1 > 0, positive shocks increase volatility more than negative ones. Thus, model
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4 It is worth noting that the VS model (11a,b) generalizes the GJR, the latter being formulated as

s2
t � w � ae2tÿ1 � ps2

tÿ1 � g1S
ÿ
tÿ1e

2
tÿ1 �i�

where S ÿtÿ1 is a dummy variable which takes the value �1 if etÿ1 is negative, and zero otherwise. Though in the VS case
St is a dummy which takes on the values minus or plus oneÐ instead of zero and one as in the GJRÐSÿtÿ1 can always
be written as

S ÿtÿ1 � �etÿ1 ÿ j etÿ1 j ��2etÿ1�ÿ1 �ii�
so that substituting equation (ii) into equation (i) and rearranging, one gets:

s2
t � w � g0e

2
tÿ1 � ps2

tÿ1 � Fstÿ1e
2
tÿ1 �iii�

where

g0 � a � g1=2 �iv�

F � ÿ�g1=2� �v�
Thus, the GJR model (iii)±(v) is obtained from the VS model (11a,b) when d0 � F and d1 � d2 � 0.



(11a,b) is able to detect situations where the asymmetric behaviour of the volatility is reversed
and further illustrates what has to be meant by size of a shock. Small shocks are those which
produce a level of volatility lower than expected; high shocks are those which generate a level of
volatility higher than expected.

The second and fourth moments of the innovations of the Volatility-switching model are
(see Appendix 1):

E�e2 � � w �1 ÿ a ÿ b�ÿ1 �12a�

E�e4 � � ��3w
2 ÿ 3d22 � �1 ÿ a ÿ b � � �6aw2 � 6bw2 � 6d1d2w ÿ 6d0d2w��
�1 ÿ a ÿ b� �1 ÿ 3a2 ÿ b2 ÿ 2ab ÿ 3d20 ÿ d21 ÿ 2d0d1�

�12b�

Since d0, d1 and d2 measure the impact of vtÿ1 on s2t , deeper asymmetries in volatility will
result in more leptokurtic distributions for the unconditional innovations.

2.2. Continuous Time Behaviour of the Models

The derivation of continuous time limits for the asymmetric models developed so far is obtained
by increasingly partitioning time in equations (3)±(6) ®nely, according to the following scheme,
where h denotes sampling frequency:

hehk � hzhk � hshk �13a�
hzhk � N�0; h� �13b�
sk � zhk= j zhk j �13c�
sk � i:i:d:�0; 1� �13d�

hs
2
h�k�1� ÿh s

2
hk � wh � d2;hsk �h s

2
hk�hÿ1�ah ÿ d0;hsk�hz2hk � �bh ÿ d1;hsk ÿ 1�� �13e�

Such a system is Markov, and we are interested in analysing the conditions under which it
converges weakly (i.e. in distribution) to an ItoÃ di�usion process, as h drops to zero. To do this,
we retain Nelson's (1990) assumptions (1 to 5), omitting, for simplicity, more general issues, such
as the conditions under which stochastic di�erence equations converge to stochastic di�erential
equations.

Before deriving the di�usion limits of the models proposed so far, we report also analogous
results for the Power ARCHmodel of Ding et al. (1993), since it has quite a general structure and
encompasses many heteroscedastic formulations, including the GJR. The latterÐas reported by
Engle and Ng (1993)Ð seems the best parametric model to capture the asymmetry of volatility
and therefore its empirical performance will be compared to that of the Volatility-switching
model.

To start with, let us replace equations (6) and (13e) with the respective Power ARCH
equations:

sd
t�1 � w 0 � a 0� j et j ÿ tet �d � bsd

t �6 0 �
�hs �h�h�k�1��d ÿ �hs�h�hk �d � w 0h � �bh � hÿ0�5d j hZ �h�hk j d�1 ÿ tsk�da 0h ÿ 1� �hs�h�hk �d �14�

Fornari and Mele (1995a) showed that the di�usion limit of equation (14) is:

dsdt � �w ÿ yds
d
t � dt � Od s

d
t dWt y5 0 �15�
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whereWt is a standard (scalar) Brownian motion, w is the continuous time counterpart (c.t.c.) of
w', and

yd � c:t:c: a0
20�5�dÿ1�G�0�5�d � 1�; 0�5�

�2p�0�5 ��1 � t�d � �1 ÿ t�d� � b ÿ 1 �16�

O2
d � c:t:c: a 0

2�dÿ0�5�G��d � 0�5�; 0�5�
�2p�0�5 ��1 � t�2d � �1 ÿ t�2d�

ÿ 20�5�dÿ1�G�0�5�d � 1�; 0�5�
�2p�0�5 ��1 � t�d � �1 ÿ t�d�2

�17�

where G�0�5�d � 1�; 0�5� � R0;1�0�5�0�5�d�1�X 0�5�dÿ1�exp�ÿ0�5X � dX .
It is easy to check that the di�usion limit (15) collapses to Nelson's (1990) standard result for

the GARCH(1,1) when d � 2 and t � 0; in the case of the GJR model, which is nested into the
Power ARCH, equation (6') reduces to

s2
t � w � g

0
e2tÿ1 � ps2tÿ1 � Fstÿ1 e

2
tÿ1 �18�

when (Ding et al., 1993)

d � 2 �19a�
a � a0�1 ÿ t�2 �19b�
g1 � 4a0t �19c�

Substitution of relations (19a±c) into (16) and (17) gives, after tedious but straightforward
algebra:

yGJR
2 � c:t:c: p � a � �g

1
=2� ÿ 1 �20a�

O2 GJR
2 � c:t:c: 2g20 � 0�75g21 �20b�

suggesting that the di�usion limit of the GJR model has the following form:

ds2t � �w ÿ yGJR
2 s2t � dt � OGJR

2 s2t dWt �21�
where Wt is a standard (scalar) Brownian motion.5

At this point it is important to investigate whether the di�usion limit (15) is able to generalize
the di�usion of the Sign- and Volatility-switching ARCHmodels; in this case, in fact, they would
be merely particular cases of the Power ARCH. To anticipate the results, it turns out that the
answer is negative for both models.

To show this, let us start with the VS model. We ®rst evaluate the expected value per unit of
time of �hs2

�k�1� ÿ h s
2
hk � in equation (13e), with s2

h generated by equation (11a). To avoid the
explosion of the drift per unit of time as h! 0, we require the following Lipschitz conditions:

lim h!0 h
ÿ1wh � w �22�

lim h!0 hÿ1�ah � bh ÿ 1� � limh!0 hÿ1yh � ÿy y5 0 �23�
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obtaining

lim h!0fE �hÿ1�hs2
h�k�1� ÿ hs

2
hk� jFhk�g � lim h!0�hÿ1wh � hÿ1�ah � bh ÿ 1�hs2

hk�
� w ÿ ys2t �24�

The evaluation of E �hÿ1�hs2h�k�1� ÿ hs
2
hk� jFhk�2 gives:

E �hÿ1�hs2
h�k�1� ÿ hs

2
hk�2 jFhk� � hÿ1Efw2

h � d22;h s
2
k � �ah � b

h
ÿ 1�2 hs4hk

� �2�a2h � d2
0;h� � �d0;h ÿ d1; h�2�hs4hk � 2wh�bh � ahh ÿ 1�

h
s2
hk�

�25�

Using the Lipschitz conditions (22) and (23) and assuming the existence of the following limits:

lim h!0 hÿ1d22;h � d22 �26�
lim h!0 hÿ1�2�a2h � d20;h� � �d0;h ÿ d1;h�2� � F2 �27�

we get:

limh!0 E �hÿ1�hs2h�k�1� ÿ h s
2
hk� jFhk�2 � d22 � F2s4t �28�

Relations (24)±(28) suggest that fhs2h�k�1�gk�0;1 converges in distribution to a di�usion limit of
the following form, as h! 0:

ds2
t � �w ÿ ys2t � dt � �d22 � F2s4t �0�5 dWt y5 0 �29�

where dWt denotes the increments of a (scalar) standard Brownian motion. It is straightforward
to check that the structural form of such di�usion limit equals the same expression as in Nelson
(1990, eq. 2.40), when d0, d1 and d2 � 0 and to derive the di�usion limit of the Sign-switching
model (3)±(6), which is essentially the same as equation (29) once d0 and d1 have been set equal to
nil in equations (25) and (27).

2.3. The Stationary Distribution of the Conditional Variance

With the GARCH(1,1), Nelson (1990) showed that the stationary distribution of the conditional
variance becomes an inverted Gamma as h (the sampling frequency) drops to zero. Then it is
interesting to analyse what this distribution is in the case of both the Sign- and Volatility-
switching models. In Appendix 2, we show that such a distribution is:

P�v j v0� proportional to: �r2 � v2�ÿm eÿn � arcotg�qv� �30�
where v � s2, v0 the initial condition, r2 � �y=a�2, m � �y=a2� � 1, n � 2w jF j ÿ1,
q � a � jF j �ÿ1. Note that

limF!0�P�v j v0� � limF!0� ÿ P�v j v0� proportional to vÿ2m eÿk=v �31�
where k � 2waÿ2. Distribution (31) is an inverted Gamma, consistent with Nelson's (1990)
results.

From equation (30) it is easy to ®nd the stationary distribution of the standard deviation of the
innovations of the Sign- and Volatility-switching models, which is

f �s j s0� ds proportional to: 2s �r2 � s4�ÿm eÿn � arcotg�qs2� ds �32�
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Relation (32) implies that the innovations of the Sign-switching or, alternatively, Volatility-
switching model, say e�, have a stationary density function, p�e��, which solves:

p�e�� �
Z
0;1

N�e�sÿ1�f �s�sÿ1 ds �33�

where N( . ) is a standard normal density function. Unfortunately we did not manage to solve the
integral in equation (33) analytically; hence, a numerical procedureÐ the adaptive recursive
Simpson's ruleÐwas employed (see e.g. Abramowitz and Stegun, 1970, formula (25.4.5),
p. 866). Results are reported in Figure 1, where the density p�e�� de®ned in equation (33) is
compared to a standard normal density.6 It is easy to note that the former has fatter tails
compared to the corresponding area of the normal variate; such a feature helps to capture the
high number of outliers observed in empirical distributions.

3. EMPIRICAL ANALYSIS

We have employed six stock market indices to test and compare the empirical performances of
the Sign- and Volatility-switching ARCH models to the GJR formulation; the latter is chosen as
a benchmark sinceÐas reported by Engle and Ng (1993)Ð it represents the best parametric
model for asymmetric conditional variances. The series are the Standard and Poor's 500 (United
States), Topix (Japan), CAC40 (France), FT-100 (United Kingdom), FAZ (Germany) and MIB
(Italy) indices, observed daily from 1 January 1990 to 16 October 1995. The sample includes 1494
observations.

Let P j
t denote the level of the jth stock index at time t. Then we evaluate six series of

unpredictable returns, ut , which are the residuals of univariate regressions of ex-post returns
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Figure 1. Stationary distribution of residuals

6 All the computations were performed with the Quadrature Routine of Matlab. The values of the parameters used in the
numerical integration procedure were w � 0�12, a � 0�15, y � 0�0045, F � 0�010. The range of variation for e� was
�ÿ8; �8�:



r jt �r jt � log�P j
t=P

j
tÿ1�� on a constant and on their lagged values, i.e.

r j
t � m j

0 �
X
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m j
i r

j
tÿ i � u j

t �34�

where m j
0 and m j

i �i � 1; . . . ; p� are real, non-stochastic parameters, i is a suitably chosen lag and
j � 1; . . . ; 6 denotes the six markets. In all the regressions i was chosen to be one according to the
criterion of Schwarz (1978).

Table I. Preliminary tests on the unpredictable returnsa

Country? United United Critical
Test; States Germany Japan Kingdom France Italy values

Q5 3.03 6.94 9.62 12.61 10.66 27.56 11.10
Q10 18.00 19.04 18.51 27.19 11.87 37.41 18.30
TR2

5 73.00 111.52 142.75 39.52 67.81 55.29 11.10
SKEW ÿ0.05 0.10 0.34 0.38 ÿ0.06 ÿ0.14 0
KU 3.53 3.21 5.84 4.14 3.02 2.42 0
JB 773.12 640.16 2151.17 1101.99 568.56 367.69 5.99
SBT 0.39 0.57 1.31 ÿ0.28 ÿ0.28 ÿ0.24 > 2 or <ÿ2
NSBT ÿ2.03 ÿ3.59 ÿ6.78 0.21 ÿ2.47 ÿ3.55 > 2 or <ÿ2
PSBT 4.99 0.99 2.65 4.28 1.31 0.12 > 2 or <ÿ2
Joint (TR2) 46.81 19.46 69.08 26.38 13.57 21.98 7.81

a Q5 and Q10 are the Box and Pierce Q-tests up to 5 and 10 lags, respectively; TR2
5 the Engle's TR

2 computed up to the
®fth lag; SKEW is the coe�cient of skewness; KU the coe�cient of excess kurtosis; JB is the Jarque and Bera test, SBT is
the Sign Bias test; NSBT is the Negative Sign Bias test; PSBT is the positive Sign Bias test; JOINT (TR2) is the Lagrange
Multiplier test for the null that the squared unpredictable returns are not explained by the lagged values of Sÿ , Sÿu and
S�u.

Table I shows a number of preliminary statistics for the six unpredictable returns. The
presence of autocorrelation for the residuals of equation (34) was ascertained by means of the
Box and Pierce's Q-test evaluated up to the ®fth and tenth lags. Under the null of no auto-
correlation, such statistics are asymptotically distributed as chi-squares with ®ve and ten degrees
of freedom, respectively; their 5% critical levels are 11.1 and 18.3. The hypothesis of auto-
correlation in the second-order moments has been tested via the TR2 (Engle, 1982); it is
evaluated as the TR2 of the regression of the squared residuals of equation (34) on a constant and
®ve own lags and is asymptotically distributed as a chi-square with ®ve degrees of freedom. As
far as the shape of the unconditional distribution of the unpredictable returns is concerned, we
report the coe�cients of skewness and kurtosis, along with the Jarque and Bera (JB) test. The
latter is asymptotically distributed as a chi-square with two degrees of freedom, under the null
that the data come from a normal distribution. Its 5% critical level is 5.99.

The tests for the presence of asymmetric behaviour of the volatility developed by Engle and Ng
(1993) are also performed. These are the Sign Bias test (SBT), the Negative Sign Bias test
(NSBT), the Positive Sign Bias Test (PSBT), and the Joint test (TR2). SBT, NSBT and PSBT are
the t-statistics for the coe�cients of a linear regression of the squared innovations of regression
(34) on S ÿtÿ1, S

ÿ
tÿ1 utÿ1, and on S �tÿ1 utÿ1, respectively, with S ÿt being a dummy variable which

equals plus one if sign�ut� � ÿ1, and zero otherwise and S �t � 1 ÿ S ÿt . The three tests can also
be run jointly as the TR2 of the following regression:

u2
t � c0 � c1S

ÿ
tÿ1 � c2S

ÿ
tÿ1 utÿ1 � c3S

�
tÿ1 utÿ1 � zt �35�
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where ci �i � 0; 1; 2; 3� are real, non-stochastic parameters and zt is a white-noise process. Such a
statistic is asymptotically distributed as a chi-square with three degrees of freedom; its critical 5%
threshold is 7.81.

All the unpredictable returns are not signi®cantly autocorrelated, with the exception of the
UK and Italy. Their unconditional distributions are not normal since the coe�cients of skewness
and the kurtoses diverge from the values typical of a Gaussian distributionÐzero and threeÐ
and the JB test rejects the normality hypothesis at any reasonable level of con®dence. The
evidence for ARCH e�ects is clearly supported by the TR2

5. Asymmetries in volatility exist in all
the series, according to the joint test. Coming to the estimation, the GJR(1,1) models have the
following structure:

rt � m0 � m1rtÿ1 � ut �36a�
ut j Itÿ1 � N�0; s2

t � �36b�

s2
t � w � au2

tÿ1 � bs2
tÿ1 � F1 stÿ1 u

2
tÿ1 �36c�

where m0; m1;w; a; b and F1 are real, non-stochastic parameters, rt is the ex-post return of the jth
index � j � 1; . . . ; 6�, st is plus one if the sign of the forecast error dated tÐi.e. sign(ut)Ð is
negative and zero otherwise. The structural form of the Volatility Switching Model is the same as
equations (36a±c) but (36c) is replaced with:

s2
t � w � au2

tÿ1 � bs2
tÿ1 � stÿ1 vtÿ1 �36d�

where:

vt � d0 u
2
t ÿ d1s

2
t ÿ d2 �36e�

and st is plus one if the sign of ut is positive, minus one if it is negative. Table II shows the values
of the parameters of the GJR models along with their t-ratios and Table III those of the VS; the
Sign-switching models have not been estimated sinceÐ if they outperformed the VSÐthe null
hypothesis that d0 � d1 � 0 would not be rejected, which never happens in the analysed cases.
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Table II. Parameters of the GJR models (t-ratios in parentheses)

Country? United United
Parameter; States Germany Japan Kingdom France Italy

m0 2�42E ÿ 7 3�17E ÿ 5 ÿ6�07E ÿ 4 1�23E ÿ 4 ÿ2�25E ÿ 4 ÿ1�94E ÿ 4
(1�28) (0�14) �ÿ2�38� (0�68) �ÿ0�79� �ÿ0�63�

m1 0�34 0�01 0�14 0�07 2�84E ÿ 2 0�25
(1�14) (0�24) (5�06) (2�76) (0�99) (8�68)

w 5�26E ÿ 6 6�92E ÿ 6 8�82E ÿ 6 2�68E ÿ 6 1�74E ÿ 5 7�35E ÿ 6
(8�26) (9�25) (8�37) (4�82) (6�46) (6�43)

a 0�09 0�11 0�16 0�09 0�07 0�06
(18�28) (16�37) (21�16) (13�33) (9�06) (14�51)

b 0�81 0�82 0�80 0�87 0�80 0�89
(94�94) (95�04) (94�94) (86�32) (49�84) (131�42)

f1 ÿ0�04 ÿ0�07 ÿ0�10 ÿ0�04 ÿ0�06 ÿ0�04
(4�57) (5�79) �ÿ8�48� �ÿ3�85� �ÿ5�29� �ÿ4�06�

Log of
likelihood 6634�78 6284�86 5938�07 6640�39 5967�58 5925�13



Our empirical results con®rm the outcome of the preliminary tests. All the series display both
high ARCH and asymmetric e�ects7 as evidenced by the signi®cance of a; b;f1; d0 and d1.
However, based on a likelihood ratio test reported in the last line of Table III the Volatility-
switching model ®ts the patterns of the data better than the GJR in all cases except Germany,
where reversals of the asymmetric reaction of the conditional volatility to the sign of past news
do not exist, at least over the sample taken into consideration. The Volatility-switching model
outperforms the GJR also when the models are ranked according to the kurtosis of the residuals
standardized with the respective conditional standard deviations, except for the UK, where the
two kurtoses coincide. In both cases, however, the models capture successfully the asymmetric
behaviour of the conditional volatility. This is highlighted by the tests of Engle and Ng (1993)Ð
reported in Table IV only for the Volatility-switchingÐperformed on the squared residuals of
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7 In the estimated models, the lags chosen for the conditional mean equation (36a) coincide with those employed in the
preliminary analysis. The likelihood has been maximized by means of the Berndt et al. (1974) procedure.

Table III. Parameters of the volatility-switching models (t-ratios in parentheses)

Country? United United
Parameter; States Germany Japan Kingdom France Italy

m0 1�71E ÿ 4 3�88E ÿ 6 ÿ5�71E ÿ 4 8�57E ÿ 5 ÿ1�88E ÿ 4 ÿ2�85E ÿ 4
(0�95) (0�02) �ÿ2�15� (0�46) �ÿ0�69� �ÿ0�98�

m1 0�05 ÿ0�01 0�15 0�08 0�03 0�26
(1�72) �ÿ0�59� (5�12) (2�82) (1�08) (8�82)

w 5�29E ÿ 6 9�06E ÿ 6 6�60E ÿ 6 2�78E ÿ 6 9�60E ÿ 6 1�02E ÿ 5
(8�48) (8�13) (6�54) (4�81) (9�31) (6�63)

a 0�09 0�12 0�15 0�09 0�05 0�11
(13�83) (14�48) (18�09) (13�08) (10�08) (12�99)

b 0�81 0�79 0�83 0�87 0�87 0�83
(79�54) (67�09) (98�88) (86�54) (125�73) (75�39)

d0 ÿ0�06 ÿ0�07 ÿ0�09 ÿ0�03 ÿ0�05 ÿ0�08
�ÿ5�64� �ÿ4�40� �ÿ5�90� �ÿ2�69� �ÿ4�31� �ÿ5�14�

d1 ÿ0�11 ÿ0�01 0�20 0�06 0�19 0�15
�ÿ2�58� �ÿ0�22� (5�80) (2�32) (2�47) (3�07)

d2 6�57E ÿ 6 2�68E ÿ 6 ÿ1�46E ÿ 5 ÿ1�39E ÿ 6 ÿ1�31E ÿ 5 ÿ2�47E ÿ 5
(3�63) (0�66) �ÿ4�80� �ÿ0�74� �ÿ1�56� �ÿ5�42�

Log of
likelihood 6679�75 6285�57 5946�78 6642�53 5973�41 5928�78
w22 of VS 89�94 1�42 8�71 4�28 11�66 7�30
against GJR �prob � 0�0� �prob � 49�2� �prob � 1�3� �prob � 3�8� �prob � 0�3� �prob � 2�6�

Table IV. Tests on residuals standardized with the standard deviation of the volatility-switching model

Country? United United
Test; States Germany Japan Kingdom France Italy

Kurtosisa 2.18 1.24 2.76 2.39 0.97 0.96
2.43 2.31 2.89 2.38 1.07 1.11
2.65 3.20 5.82 4.18 3.03 2.38

Sign Bias test 1.03 1.18 ÿ0�98 1.38 ÿ0�12 1.19
Negative Sign Bias test ÿ0�04 0.06 0.52 ÿ0�16 0.46 ÿ1�46
Positive Sign Bias test ÿ0�57 0.46 1.45 ÿ0�02 ÿ0�15 ÿ0�03
a The second and third lines show, for comparison, the excess kurtosis of the residuals standardized with the GJR
conditional standard deviation and the sample standard deviation, respectively.



equation (36a) standardized with the conditional standard deviation. In all cases the SBT, PSBT
and NSBT tests do not reveal any presence of asymmetry in the reaction of such series to the sign
of past forecast errors. In all cases, the generating processes of the conditional variances are
stationary; in fact their persistenceÐas roughly measured by a � bÐis always below unity.

Despite a similar empirical performance, what distinguishes the two models is the inter-
pretation of the reversal of the asymmetric behaviour of the conditional volatility. Its existence is
highlighted by the signi®cance of d0 and d1 for all countries, except Germany, in the VS model
while it is ignored by the GJR, which gives it a priori a probability equal to nil. To clarify this
point denote, assuming that d0 < 0 which is the case of our estimates,

Prfreversalg � Prfe2tÿ1 < k0E�e2tÿ1 j I tÿ2� � k1g � Prfe 2tÿ1 < k0s2
tÿ1 � k1g

where k0 � d1=d0, k1 � d2=d0, I tÿ2 is the information set available to economic agents when the
expectations are formed and E( . ) is the conditional expectation operator. Dividing the above
relation by s2

tÿ1 and recalling that e2t =s
2
t is distributed as a chi-square with one degree of

freedom, we obtain

Prfreversalg � Prfw21 < k0 � k1s
ÿ2
t g

Note that the probability of reversal is an increasing function of the conditional precision
process, when d2 < 0. Then, if �d1 5 0 \ d2 5 0� holds, the probability of reversal is nil; such a
situation arises for the GJR whichÐas recalled in footnote 4Ð is a special case of a Volatility-
switching once d1 � d2 � 0. Thus the Volatility-switching model allows a more detailed analysis
of the asymmetric behaviour of the volatility enabling, by construction, shifts in its direction,
according to the size of past shocks.

To conclude, it is worth noting that the estimated models have a disturbing feature, the remedy
for which is outside the aim of this paper. What happens is that although the kurtosis of the
residuals standardized with the conditional standard deviation is lower than in the original series,
it is still higher than 3, the value typical of a normal variate. At a very least, this suggests that the
distributional assumptions made for the conditional distribution of the innovations should be
modi®ed. It may turn out that other hypotheses, such as the Generalized Error distribution, or
the Student-t, could improve the results achieved so far.

4. CONCLUSIONS

Sign- and Volatility-switching models have been presented in the paper. They allow for an
asymmetric behaviour of the conditional volatility with respect to negative and positive shocks,
since they map the sign of past forecast errors onto the current, conditional volatility. The
Volatility-switching model is also able to capture reversions in the asymmetric behaviour of the
volatility. Weak convergence results presented for both models show that they converge in
distribution to ItoÃ di�usion processes; also they are shown to have a stationary distribution
function, for which a closed form solution was provided. Numerical procedures were employed
to compute the stationary distribution of the innovations of these models. Empirical analysis has
shown that the proposed models provide better interpretative results than the GJR, since they
are able to give further insights regarding the reversion of the asymmetry of the conditional
volatility.

Two issues deserve further research: ®rst, the hypothesis of conditional normality for the
innovations of the model needs to be modi®ed; second, the response function of the
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Volatility-switching model is just a linear function of vtÿ1, the size of previous unexpected
volatility, times the sign of past forecast errors. Other (non-linear) speci®cations might be
plausible, although the weak convergence analysis for such speci®cations would inevitably
become more intricate.

APPENDIX 1

Unconditional Moments of ee for the Sign-switching GARCH(1,1,1)

Given that et j Itÿ1 � N�0; s2t �, and:

E�e2mt j Itÿ1� � �w � bs2
tÿ1 � ae2tÿ1 � Fstÿ1�mh2m �A1�

where h2m � Pi�1;...;m�2 j ÿ 1�. Setting m � 1 in equation (A1) yields:

E �e2t j Itÿ1� � w � bs2
tÿ1 � ae 2tÿ1 � Fstÿ1

when t is allowed to tend to in®nity, so that the dependence of the current values on their past
realization becomes negligible, we get:

E �e2 � � w � bE �s2� � aE �e2� � FE �s� � w=�1 ÿ b ÿ a� �A2�
Setting m � 2 and letting time go to in®nity in equation (A1) gives:

E�e4 � � 3E �w2 � b2s4 � a2e4 � F2 � 2abs2e2 � 2bws2 � 2awe2�
� 3w2 � 3b2E�s4� � 3a2E�e4� � 3F2 � 6abE �s4� � 6bwE�s2 � � 6awE�e2 �
� 3w2 � 3b2E�e4�=3 � 3a2E�e4 � � 3F2 � 6ab�1=3�E �e4 � � 6bw�w=�1 ÿ b ÿ a��
� 6aw�w=�1 ÿ a ÿ b��

� �3�w2 � F2 ��1 ÿ b ÿ a� � 6w2�a � b �� ��1 ÿ b ÿ a��1 ÿ b2 ÿ 3a2 ÿ 2ba��ÿ1 �A3�

The last expression collapses to the standard result of Bollerslev (1986) when F � 0.

Unconditional Moments of ee for the Volatility-switching Model

De®ne the Volatility-switching model as

s2t � w � ae 2tÿ1 � bs2
tÿ1 � �d0e2tÿ1 ÿ d1s2

tÿ1 ÿ d2�stÿ1
and let et be zero mean conditionally normally distributed, with conditional variance s2

t . Hence:

E �e2mt j Itÿ1� � �w � bs2
tÿ1 � ae2tÿ1 � stÿ1vtÿ1�mh2m

where h2m � Pj�1;...;m�2j ÿ 1�. Setting m � 1 in equation (A2) gives:

E �e 2t j Itÿ1� � w � ae2tÿ1 � bs2
tÿ1 � stÿ1vtÿ1

Recursive substitution yields:

E �e2 � � w=�1 ÿ b ÿ a� �A4�
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Setting m � 2, and letting time go to in®nity in equation (A2), so that the dependence of
current values on the past is negligible, gives:

E�e4 � � 3E �w2 � a2e4 � b2s4 � d20e
4 � d21s

4 � d22 � 2d0d1e2s2 ÿ 2d0d2e2

� 2d1d2s2 � 2awe2 � 2bws2 � 2abe2s2�
E�e4��1ÿ3a2 ÿ b2 ÿ 3d20 ÿ d21� � �3w2 ÿ 3d22�

� �ÿ6d0d2w � 6d1d2w � 6aw2 � 6bw2�=�1 ÿ a ÿ b�

so that

E �e4 � � �3w
2 ÿ 3d22��1 ÿ a ÿ b� � �6aw2 � 6bw2 ÿ 6d0d2w � 6d1d2w�

�1 ÿ 3a2 ÿ b2 ÿ 3d20 ÿ d21��1 ÿ a ÿ b� �A5�

APPENDIX 2

The Stationary Distribution of ss2 in the Sign- and Volatility-Switching Model

Let v � s2, and rewrite equation (29) as:

dv � �w ÿ yv� dt � �F2 � a2 v2�0�5 dW �B1�
Let p�s; t; v�t� j v0� be the probability density function of v, given v0 and 0 < s < t <1. The

Fokker±Planck±Kolmogorov forward di�usion equation (see e.g. Papoulis, 1965) associated
with equation (B1) is:

@� p �s; t; v j v0��=�@t� � 0�5@2f��F2 � a2v2�p�s; t; v j v0��g=�@v2� ÿ @f��w ÿ yv�p �s; t j v0��g=�@v�
where @��� denotes the derivative operator.

As Nelson (1990) remarks (see also Papoulis, 1965; Wong, 1971), an invariant density function
(given it exists) must satisfy:

0�5@fv ��F2 � a2v2�p�v j v0��g=�@v� � �w ÿ yv�p�v j v0� �B2�
where p�v j v0� � limt!0 p �s; t; v j v0�. Developing equation (B2) explicitly yields:

��@P �=�@v��=P � 2w �F2 � a2v2�ÿ1 ÿ 2�y � a2�v �F2 � a2v2� ÿ1

Hence

ln�P � / ÿ2w �a jF j �ÿ1 arcotg�av= jF j � ÿ �y � a2�aÿ2 ln�F2 aÿ2 � v2� �B3�
Taking the exponent of both sides of equation (B3) gives directly the density in equation (32) of
the text.
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